A versatile CRISPR/Cas9 system off-target prediction tool using language model.

Commun Biol

Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, Guangdong, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome editing with the CRISPR/Cas9 system has revolutionized life and medical sciences, particularly in treating monogenic genetic diseases by enabling long-term therapeutic effects from a single intervention. However, the CRISPR/Cas9 system can tolerate mismatches and DNA/RNA bulges at target sites, leading to unintended off-target effects that pose challenges for gene-editing therapy development. Existing high-throughput detection and in silico prediction methods are often limited to specifically designed single guide RNAs (sgRNAs) and perform poorly on unseen sequences. To address these limitations, we introduce CCLMoff, a deep learning framework for off-target prediction that incorporates a pretrained RNA language model from RNAcentral. CCLMoff captures mutual sequence information between sgRNAs and target sites and is trained on a comprehensive, updated dataset. This approach enables accurate off-target identification and strong generalization across diverse NGS-based detection datasets. Model interpretation reveals the biological importance of the seed region, underscoring CCLMoff's analytical capabilities. The development of CCLMoff lays the foundation for a comprehensive, end-to-end sgRNA design platform, enhancing both the precision and efficiency of CRISPR/Cas9-based therapeutics. CCLMoff is a versatile tool and is publicly available at github.com/duwa2/CCLMoff .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144082PMC
http://dx.doi.org/10.1038/s42003-025-08275-6DOI Listing

Publication Analysis

Top Keywords

crispr/cas9 system
12
off-target prediction
8
language model
8
target sites
8
versatile crispr/cas9
4
off-target
4
system off-target
4
prediction tool
4
tool language
4
model genome
4

Similar Publications

genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.

View Article and Find Full Text PDF

[Harnessing retroviral engineering for genome reprogramming].

Med Sci (Paris)

September 2025

CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.

The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.

View Article and Find Full Text PDF

Improved protocol for the vitrification and warming of rat zygotes by optimizing the warming solution and oocyte donor age.

PLoS One

September 2025

Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF

Cerebral Cavernous Malformations (CCMs) are vascular anomalies in the central nervous system that arise from both genetic and non-genetic factors, and can cause hemorrhage, seizures, and neurological deficits. Approximately 80% of CCMs are sporadic, while 20% are Familial (FCCMs), an autosomal dominant, monogenic disorder characterized by multiple lesions and severe clinical manifestations. Over the past three decades, linkage analyses have identified KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3 as major pathogenic genes in FCCMs.

View Article and Find Full Text PDF