Redefining the capacity limitation of Li-air batteries by uncoupling the competitive multiple-transport and nucleation.

Chem Commun (Camb)

Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Binshui Xidao 391, Xiqing District, 300384 Tianjin, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An ordered thick porous air electrode was designed to decouple O/Li/electron transport, redefining the relationship between current density and capacity, and challenging the misunderstanding of high capacity at low current density. This result provides guidance for the design of the cathode structure for metal-air batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc01769fDOI Listing

Publication Analysis

Top Keywords

current density
8
redefining capacity
4
capacity limitation
4
limitation li-air
4
li-air batteries
4
batteries uncoupling
4
uncoupling competitive
4
competitive multiple-transport
4
multiple-transport nucleation
4
nucleation ordered
4

Similar Publications

Optimal cerium microalloying enhances SASS/Q235 weld corrosion and antibacterial performance.

iScience

September 2025

State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Super austenitic stainless steels (SASS) face challenges like galvanic corrosion and antibacterial performance when welded to carbon steel (Q235) in marine environments. This study demonstrates that adding 1.0 wt% cerium (Ce) to SASS refines the heat-affected zone (HAZ) grain structure (from 7 μm to 2 μm), suppresses detrimental σ-phase precipitation, and forms a dense oxide film.

View Article and Find Full Text PDF

Design strategies for energy-harvesting photovoltaics in diverse environments.

iScience

September 2025

Energy Conversion Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute, Changwon, Gyeongsangnam-do 51543, Republic of Korea.

Indoor photovoltaics (IPVs) are small and not optimized for versatile environments, making them environmentally sensitive. To expand the application of energy-harvesting photovoltaics, overcoming the current problems and mismatch loss is important. In this study, we found that IPVs are sensitive to changes in current density under low illuminance, and we introduced a protocol to reveal the modules resulting in the smallest standard deviation using current maps.

View Article and Find Full Text PDF

Controlling Chloride Crossover in Bipolar Membrane Water Electrolysis.

ACS Electrochem

September 2025

Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.

View Article and Find Full Text PDF

Evaluation of tumor infiltrating lymphocytes as recommended by current guidelines is largely based on stromal regions within the tumor. In the context of epithelial malignancies, the epithelial region and the epithelial-stromal interface are not assessed, because of technical difficulties in manually discerning lymphocytes when admixed with epithelial tumor cells. The inability to quantify immune cells in epithelial-associated areas may negatively impact evaluation of patient response to immune checkpoint therapies.

View Article and Find Full Text PDF

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF