Severity: Warning
Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied
Filename: drivers/Session_files_driver.php
Line Number: 365
Backtrace:
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We demonstrate a MoS/CoS nano-heterostructure as a thermoelectric (TE) catalyst for HO generation from pure water under a mild temperature gradient. The strong interfacial interaction enhances charge separation and reactivity, significantly improving catalytic efficiency. This synergistic effect greatly boosts TE catalytic performance, demonstrating a sustainable and efficient strategy for green synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cc01202c | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.
Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.
View Article and Find Full Text PDFNature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics, Xiamen University, xiamen, Xiamen, Fujian, 361005, CHINA.
Thermal rectification, arising from asymmetric heat transport under opposite temperature gradients, is essential for thermal management in electronics. We present a generalized optimization strategy for two-segment rectifiers based on Fourier's law, showing that the rectification ratio $R$, defined as the forward-to-reverse heat flux ratio, is maximized when the interface temperatures coincide in both directions. By expressing $R$ as a function of interface temperature and extending the analysis to arbitrary temperature-dependent thermal conductivities $\kappa(T)$, we develop an analytical framework to optimize rectifiers with dissimilar segments.
View Article and Find Full Text PDFJ Mol Graph Model
September 2025
Department of Physics, Patan Multiple Campus, Tribhuvan University, Patandhoka, Lalitpur, 44700, Bagmati, Nepal; Department of Physics, St. Xavier's College, Maitighar, Bagmati, 44600, Kathmandu, Nepal. Electronic address:
The bioactive organosulfur compound diallyl sulfide (DAS), found in garlic and onions, was analyzed using density functional theory (DFT). DAS exhibits antimicrobial and anticancer properties, making it a potential candidate for drug discovery. Geometry optimization revealed bond lengths and angles consistent with electron delocalization.
View Article and Find Full Text PDFPhytopathology
September 2025
Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Xinong Road #22, Yangling, Shaanxi, China, 712100.
head blight (FHB), caused by the FHB species complex, is one of the most damaging diseases affecting wheat. Accurately predicting FHB occurrence prior to infection is crucial for preventing outbreaks, minimizing crop losses, and reducing the risks of mycotoxins entering the food chain. This study utilized 55 years of historical weather data and the level of primary inoculum in crop debris to predict FHB severity.
View Article and Find Full Text PDF