98%
921
2 minutes
20
Boron-containing polycyclic aromatic hydrocarbons are promising materials for the development of displays due to their multiple-resonance thermally activated delayed fluorescence (MR-TADF) with narrowband emission. However, except for electrophilic aromatic borylation reactions, synthetic strategies for the generation of boron-containing MR-TADF molecules remain virtually unexplored. In particular, the synthesis of MR-TADF emitters that exhibit narrow near-ultraviolet and pure deep-blue emission constitutes a challenging task. Here, we present a directed tri-ortho-lithiation-borylation approach that provides a new family of N,N-bridge-type triphenylboranes that bear phenylimino groups instead of the methylene groups at the 8- and 14-positions and ether groups instead of the hydrogen atoms at the 3- and 19-positions of 1-borapentacyclohenicosanonaene. The effects of the electron-donating resonance of the oxygen atoms of the ether groups and the incorporation of oxygen atoms in the six-membered cycle allow the precise tuning of the HOMO-LUMO energy gaps, resulting in narrowband near-ultraviolet and pure deep-blue TADF with Commission-International-de-l'Éclairage coordinates (CIE ) of (0.142-0.160, 0.029-0.063) for the photoluminescence (PL) and (0.146-0.160, 0.026-0.053) for the electroluminescence (EL). The CIE for the EL meet the BT.2020 requirement for the blue primary of ultrahigh-definition displays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322632 | PMC |
http://dx.doi.org/10.1002/anie.202510891 | DOI Listing |
Luminescence
September 2025
Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi, China.
Phosphors, as the crucial material of phosphor-converted white light-emitting diodes (pc-WLEDs), have played an essential role in improving luminescent efficiency and regulating color rendering index (CRI). Hence, we have successfully synthesized a novel Eu doped Sr(AlO)(WO) (SAWO) green phosphor for the first time using the solid-state reaction, as well as systematically investigated its phase and crystal structure, luminescent properties, and thermal stability. The SAWO:x mol%Eu (0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2025
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan.
Boron-containing polycyclic aromatic hydrocarbons are promising materials for the development of displays due to their multiple-resonance thermally activated delayed fluorescence (MR-TADF) with narrowband emission. However, except for electrophilic aromatic borylation reactions, synthetic strategies for the generation of boron-containing MR-TADF molecules remain virtually unexplored. In particular, the synthesis of MR-TADF emitters that exhibit narrow near-ultraviolet and pure deep-blue emission constitutes a challenging task.
View Article and Find Full Text PDFChem Sci
October 2024
Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
Nat Commun
May 2024
Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, 305-8573, Japan.
Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs).
View Article and Find Full Text PDFSci Rep
November 2023
Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
Nanoparticles have substantially contributed to the field of skincare products with ultraviolet (UV) filters to preserve human skin from sun damage. Thus, the current study aims to develop new polymer nanocomposites for the efficient block of UV light that results from the stratospheric ozone layer loss. Co-precipitation method was used to successfully synthesis CuO@ZnO core/shell NPs with a well-crystalline monoclinic CuO core and wurzite ZnO shell.
View Article and Find Full Text PDF