Case Report: Optical genome mapping enables identification of complex balanced chromosomal rearrangements.

Front Genet

Department of Medical Laboratory, Affiliated Hospital of Jining Medical University, Shandong Key Laboratory of Multi-disciplinary Molecular Diagnosis Precision Medicine, Jining, Shandong, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Individuals with balanced chromosomal rearrangements are at an increased risk for infertility, recurrent miscarriages, and the birth of infants with congenital malformations. Traditional cytogenetic techniques are limited by their low resolution, whereas optical genome mapping offers enhanced capabilities for detecting chromosomal rearrangements and determining genomic localization and orientation. This study sought to evaluate the efficacy of optical genome mapping in identifying complex balanced chromosomal rearrangements that may contribute to fertility challenges.

Case Presentation: A 21-year-old Asian female patient with a history of recurrent abortions was included in the study. Peripheral blood samples were collected for high-resolution karyotyping, chromosomal microarray analysis, and optical genome mapping. The high-resolution karyotype analysis identified complex chromosomal abnormalities. Optical genome mapping has revealed additional cryptic chromosomal aberrations, such as ins (2; 12) (p16.1; q12q12), inv (6) (q21q21), and inv (12) (q12q12), offering a novel perspective on this case. Notably, the disrupted genes, including , , and , have not been classified as pathogenic by existing databases.

Conclusion: This study underscores the capability of optical genome mapping to deliver comprehensive and precise information. It is anticipated that optical genome mapping will emerge as a valuable cytogenetic tool within clinical genetic methodologies, providing new references and insights for clinical practice in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12138902PMC
http://dx.doi.org/10.3389/fgene.2025.1555485DOI Listing

Publication Analysis

Top Keywords

optical genome
28
genome mapping
28
chromosomal rearrangements
16
balanced chromosomal
12
complex balanced
8
optical
7
genome
7
mapping
7
chromosomal
7
case report
4

Similar Publications

Tropism and Retinal Transduction Efficiency of Adeno-Associated Virus Serotypes in Mice.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.

Purpose: Adeno-associated viruses (AAVs) have become the preferred vector for gene therapy in ophthalmology. However, requirements for specific cell surface receptors limit AAV-mediated retinal cell transduction efficiency. This led to the need to engineer novel AAV vectors for widespread retinal transduction and transgene expression.

View Article and Find Full Text PDF

Visualizing Electronic Vibrations on the Wave Function Tiles of the Low-Lying Singlet Excited States of Benzene.

J Chem Theory Comput

September 2025

International Center for Quantum and Molecular Structures, Faculty of Physics, Shanghai University, Shanghai 200444, China.

The representation of the electronic structure of benzene is important for understanding the properties of planar and monocyclic organic carbon compounds. Resonant Kekulé and conjugated structures based on localized and delocalized electronic theories, respectively, can be used to depict the ground state of benzene; however, depictions of its electrons vibrating in the excited states remain to be clarified. This paper presents a novel algorithm for exploring the three lowest lying vertically singlet excited states of benzene, focusing on the electronic excitations between occupied π and unoccupied π* orbitals.

View Article and Find Full Text PDF

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF

Background: Studies examining the association of chronic kidney disease (CKD) with cancer risk have demonstrated conflicting results.

Methods: This was an individual participant data meta-analysis including 54 international cohorts contributing to the CKD Prognosis Consortium. Included cohorts had data on albuminuria [urine albumin-to-creatinine ratio (ACR)], estimated glomerular filtration rate (eGFR), overall and site-specific cancer incidence, and established risk factors for cancer.

View Article and Find Full Text PDF

The Anatolian ground squirrel (Spermophilus xanthoprymnus) offers a valuable model for investigating neuroadaptive processes in the retina during hibernation. This study aimed to assess the expression of vesicular glutamate transporter 1 (VGLUT1), glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67, and microtubule-associated protein 2 (MAP2) in the retina during pre-hibernation and hibernation states. Retinal tissues were analyzed using immunohistochemistry and densitometric quantification.

View Article and Find Full Text PDF