98%
921
2 minutes
20
This study developed a three-electrode system that integrates electro-Fenton (EF) and electrocatalytic hydrodechlorination (ECH) technologies, enabling simultaneous redox processes for the efficient degradation of chlorophenolic pollutants while minimising the formation of chlorine-containing by-products. The system includes a Pd/Ni foam electrode for enhanced hydrodechlorination and an acetylene black/Fe₃O₄ electrode for in-situ H₂O₂ generation and activation to produce hydroxyl radicals. The innovation of this work lies in the novel combination of electrochemical Fenton oxidation and electrocatalytic hydrodechlorination within a single system, offering a more efficient and environmentally friendly solution for chlorophenol degradation. Compared to the EF system, the three-electrode setup significantly improved the degradation efficiency of 2,4,6-trichlorophenol (2,4,6-TCP) and reduced by-product formation. Additionally, it showed less sensitivity to changes in current intensity and pH, offering a more robust and effective approach for water treatment. However, it is worth noting that the catalytic efficiency of the three-electrode (oxidation-reduction) system decreases gradually as the number of electrolytic cycles increases due to catalyst loss on the electrode surface. Finally, the degradation experiments of 2,4-DCP indicated that the three-electrode (oxidation-reduction) system holds considerable potential for the management of chlorophenol pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2025.2511184 | DOI Listing |
J Inorg Biochem
September 2025
National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA. Electronic address:
Flavin-based electron bifurcation (FBEB) is employed by microorganisms for controlling pools of redox equivalents by reversibly splitting electron pairs into high- and low-energy levels from an initial midpoint potential. Our ability to harness this phenomenon is crucial for biocatalytic design which is limited by our understanding of energy coupling in the bifurcation system. In Pyrococcus furiosus, FBEB is carried out by the NADH-dependent ferredoxin:NADP-oxidoreductase (NfnSL), coupling the uphill reduction of ferredoxin in NfnL to the downhill reduction of NAD in NfnS from oxidation of NADPH.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.
View Article and Find Full Text PDFChemphyschem
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Smart Polymeric Biomaterials Research Group, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium.
The lower gastrointestinal (GI) tract is affected by a range of diseases, including colorectal cancer and inflammatory bowel disease, among others. Effective treatment of these conditions requires drug delivery systems (DDSs) capable of precise targeting. While pH- and enzyme-sensitive DDSs are the most used, they often suffer from premature drug release and target specificity, limiting their efficacy.
View Article and Find Full Text PDF