Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Information on individual age is a fundamental aspect in many ecological and evolutionary studies. However, accurate and non-lethal methods that can be applied to estimate the age of wild animals are often absent. Furthermore, since the process of ageing is accompanied by a physical decline and the deterioration of biological functions, the biological age often deviates from the chronological age. Epigenetic marks are widely suggested to be associated with this age-related physical decline, and especially changes in DNA methylation are suggested to be reliable age-predictive biomarkers. Here, we developed separate epigenetic clocks for ageing and development in a small passerine bird, the great tit (Parus major). The ageing clock was constructed and evaluated using erythrocyte DNA methylation data of 122 post-fledging individuals, and the developmental clock using 67 pre-fledging individuals from a wild population. Using a leave-one-out cross-validation approach, we were able to accurately predict the ages of individuals with median absolute deviations of 0.40 years for the ageing and 1.06 days for the development clock. Moreover, using existing data from a brood-size manipulation, we show that nestlings from reduced broods are estimated to be biologically older compared to control nestlings, while they are expected to have higher fitness. These epigenetic clocks provide further evidence that, as observed in mammals, changes in DNA methylation of certain CpG sites are highly correlated with chronological age in birds and this opens up new avenues for broad applications in behavioural and evolutionary ecology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.14128DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415945PMC

Publication Analysis

Top Keywords

epigenetic clocks
12
dna methylation
12
clocks ageing
8
ageing development
8
physical decline
8
chronological age
8
changes dna
8
ageing
5
age
5
independent avian
4

Similar Publications

Epigenetic Age Acceleration and Cardiometabolic Biomarkers in Response to Weight-Loss Dietary Interventions Among Obese Individuals: The MACRO Trial.

Aging Cell

September 2025

Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.

Epigenetic clocks have emerged as promising biomarkers of aging, but their responsiveness to lifestyle interventions and relevance for short-term changes in cardiometabolic health remain uncertain. In this study, we examined the associations between three epigenetic aging measures (DunedinPACE, PCPhenoAge acceleration, and PCGrimAge acceleration) and a broad panel of cardiometabolic biomarkers in 144 obese participants from the MACRO trial, a 12-month weight-loss dietary intervention comparing low-carbohydrate and low-fat diets. At pre-intervention baseline, DunedinPACE was significantly associated with several cardiometabolic biomarkers (FDR [false discovery rate] < 0.

View Article and Find Full Text PDF

Aging increases the global burden of disease, yet its molecular basis remains incompletely understood. Recent studies indicate that reversible epigenetic drift-spanning DNA methylation clocks, histone codes, three-dimensional chromatin, and noncoding RNA networks-constitutes a central regulator of organismal decline and age-related diseases. How these epigenetic layers interact across different tissues-and how best to translate them into therapeutic strategies-are still open questions.

View Article and Find Full Text PDF

Metabolomic-based aging clocks.

NPJ Metab Health Dis

September 2025

ATLAS Molecular Pharma, Parque Tecnológico de Bizkaia, Ed. 800, 48160, Derio, Spain.

Molecular aging clocks estimate biological age from molecular biomarkers and often outperform chronological age in predicting health outcomes. Types include epigenetic, transcriptomic, proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-throughput platform to assess metabolic health.

View Article and Find Full Text PDF

Deep aging clocks: AI-powered strategies for biological age estimation.

Ageing Res Rev

September 2025

College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar; College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar. Electronic address:

Several strategies have emerged lately in response to the rapid increase in the aging population to enhance health and life span and manage aging challenges. Developing such strategies is imperative and requires an assessment of biological aging. Several aging clocks have recently been developed to measure biological aging and to assess the efficacy of longevity interventions.

View Article and Find Full Text PDF

Epigenetic clocks are measures of biological aging related to critical health outcomes, including mortality. The present study examined whether personality traits are related to epigenetic aging. Participants (Age range: 17-98 years, N > 6000) were from the Health and Retirement Study, the Midlife in the United States study, and the UK Household Longitudinal Study.

View Article and Find Full Text PDF