98%
921
2 minutes
20
Background: Hyperbaric oxygen therapy (HBOT) has been validated as a potential treatment for metabolic dysfunction, but its effect on metabolic dysfunction-associated steatohepatitis (MASH) has not been well elucidated. This study aims to determine the effect of HBOT on diet-induced MASH in mice.
Method: HBOT (2.2 ATA, 60 min per day for 4 weeks) was administrated in mice fed with 12-week high-fat, high-cholesterol (HFHC) and 4-week methionine- and choline-deficient (MCD) diets to explore the therapeutic effects on MASH. 16S rRNA sequencing, oral broad-spectrum antibiotic cocktail (Abx) administration and non-targeted metabolomics were employed to further investigate the modulatory effect of HBOT on gut microbiota and liver metabolism.
Results: Dyslipidemia, liver dysfunction, hepatic steatosis, inflammation and fibrosis were markedly attenuated by HBOT intervention in HFHC-fed mice. In parallel, HBOT showed similar therapeutic effects in MCD-fed mice. Furthermore, 16S rRNA sequencing revealed that the MASH-associated community diversity reduction of gut microbiota was reversed by HBOT, which also improved gut dysbiosis and increased the relative level of beneficial bacteria, such as Alloprevotella and Akkermansia. Removal of gut microbiota by Abx obviously abolished the therapeutic effect of HBOT. Additionally, HBOT significantly changed liver metabolism and ameliorated the changes of sphingolipids, which were significantly correlated with gut microbiota changes.
Conclusion: In summary, HBOT protects against diet-induced steatohepatitis in mice by remodeling the gut microbiota and improving the liver metabolic profile, indicating promising therapy for MASH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2025.05.420 | DOI Listing |
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFJ Crohns Colitis
September 2025
Department of Gastroenterology, University Hospital of Marseille Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.
Background And Aims: While this strategy is frequently used for other biologics, real-world evidence on subcutaneous (SC) vedolizumab (VDZ) dose intensification in inflammatory bowel disease (IBD) is lacking. This study aimed to assess the effectiveness and safety of SC VDZ intensification.
Methods: We conducted a retrospective study in 25 centers including all patients with active ulcerative colitis (UC) or Crohn's disease (CD) (defined by PRO2), and incomplete or loss of response to SC VDZ 108mg EOW when the drug was intensified.
Anesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.