Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bisphenol A (BPA) substitutes are widely used as food contact materials and consumer products, while the effects of pathophysiologically relevant concentrations of BPA substitutes on aging remain unclear. In this study, we used () to investigate the effects of five BPA substitutes [bisphenol S (BPS), bisphenol B, bisphenol F (BPF), tetramethyl BPF, and 4,4'-(Perfluoropropane-2,2-diyl)diphenol] at pathophysiologically relevant exposure levels during aging and examined the underlying mechanisms using a mouse model. Our results indicated that, among the five BPA substitutes, exposure to pathophysiologically relevant concentrations of BPS (300, 450, and 600 nM) accelerated aging in . In mice, exposure to a pathophysiologically relevant concentration of BPS (125 μg/kg/day, from 4 to 20 mo of age) similarly reduces the life and health span and accelerates aging phenotypes in multiple tissues. Further investigations demonstrated that long-term BPS exposure resulted in a significantly higher accumulation of BPS in brown adipose tissue (BAT) than in other organs. RNA sequencing analysis of BAT revealed that BPS accelerates BAT aging through multiple pathways. Importantly, transplantation of BAT from BPS-exposed mice into BPS-naive mice accelerated aging in recipients. Conversely, transplantation of BAT from unexposed mice into BPS-exposed mice significantly improved their metabolic status and delayed aging. These findings elucidate the impact of pathophysiologically relevant concentrations of BPS on the aging process and suggest that these effects are likely mediated through the disruption of BAT function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167992PMC
http://dx.doi.org/10.1073/pnas.2420437122DOI Listing

Publication Analysis

Top Keywords

pathophysiologically relevant
24
bpa substitutes
16
relevant concentrations
12
aging
9
accelerates aging
8
brown adipose
8
exposure pathophysiologically
8
concentrations bps
8
accelerated aging
8
transplantation bat
8

Similar Publications

Dissecting the clinical and pathophysiological complexity of fundus tessellation.

Surv Ophthalmol

September 2025

University of Pittsburgh School of Medicine, Department of Medical Retina and Vitreoretinal Surgery, 203 Lothrop Street, Suite 800, Pittsburg, PA 15213.

Fundus tessellation (FT)-also referred to as tigroid or mosaic fundus-is characterized by increased visibility of underlying choroidal vessels. While often a physiological finding, FT may also signal early pathology in conditions such as high myopia, choroidal atrophy, or pigmentary disorders. We synthesize current understanding of the anatomical, optical, and imaging factors influencing FT appearance, including the roles of axial elongation, melanin distribution, and media clarity.

View Article and Find Full Text PDF

Aim: Volumetric analysis of orbital soft tissues using magnetic resonance imaging (MRI) offers valuable diagnostic and pathophysiological insights into orbital inflammation, trauma, and tumors. However, the optimal MRI protocols and post-processing methods for specific conditions remain unclear.

Methods: A systematic search was performed in PubMed/MEDLINE, Web of Science, and Cochrane Library for all studies published before November 2024.

View Article and Find Full Text PDF

Imparting new stimuli-responsive behaviors in protein-polymers self-immolative linker conjugation.

J Mater Chem B

September 2025

The Avram and Stella Goldstein Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel.

The development of "smart" polymers capable of responding to physiologically relevant stimuli is essential for engineering dynamic sensing and actuation systems that leverage biological signals under specific (patho)physiological conditions. In this study, we present a general and versatile strategy to engineer novel stimuli-responsive behaviors in temperature-responsive protein-based polymers (PBPs) site-specific conjugation with self-immolative molecules. Specifically, we developed hydrogen peroxide (HO)- and β-galactosidase (β-gal)-responsive elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs).

View Article and Find Full Text PDF

Colorectal cancer (CRC), a highly prevalent malignant tumor in clinical practice, poses a serious threat to human health. In 2015, the relevant guidelines issued by the United States clearly stipulated that only patients with the wild-type kirsten rat sarcoma viral oncogene homologue (KRAS) gene were recommended to receive epidermal growth factor receptor (EGFR) inhibitor treatment. Therefore, accurately predicting the status of the KRAS gene plays a crucial role in formulating scientific and reasonable treatment plans and improving prognosis.

View Article and Find Full Text PDF

Concentration-dependent binding to red blood cells is a characteristic of several drugs, complicating the understanding of how pathophysiological factors influence drug behavior. This study utilized user-friendly, physiologically-based pharmacokinetic (PBPK) models to compare concentration-dependent and independent blood-to-plasma drug concentration ratios (B/P), using tacrolimus as a case study. Two models were developed and validated for tacrolimus using clinical data from healthy volunteers; Model 1 accounted for saturable blood binding, and Model 2 used a constant B/P level.

View Article and Find Full Text PDF