Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Hydrazones, due to the structural diversity of their nitrogen atoms, possess both electrophilic and nucleophilic properties, enabling strong hydrogen bonding interactions with enzymes and receptors. This study aimed to synthesize novel hydrazone derivatives and evaluate their antimicrobial potential.

Methods: Hydrazones were synthesized via condensation of 2-hydrazinobenzimidazole with various aldehydes or ketones using citric acid as an eco-friendly catalyst. The (E)-configuration of the products was confirmed through frontier molecular orbital (FMO) calculations. Antimicrobial activities were assessed against selected Gram-positive and Gram-negative bacteria, and fungi. Molecular docking studies were conducted on the most active compounds ( and ) using bacterial and fungal protein targets (2IWC, 2NXW, 1EA1).

Results: Compounds and showed strong antimicrobial activity. Docking studies revealed that both compounds interacted with 2IWC via one H-bond donor to THR531 (3.12 Å), mirroring ampicillin. Against 2NXW, they showed dual H-donor bonding to MET404 with binding energies of -5.96 and -5.72 kcal/mol, comparable to gentamicin. Both also bound ARG326 in 1EA1 with binding energies of -5.97 and -6.0 kcal/mol, similar to nystatin.

Discussion: The comparable binding patterns and energies of compounds and to standard antimicrobial agents suggest that they are promising candidates for further development as broad-spectrum antimicrobial agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126145PMC
http://dx.doi.org/10.2147/DDDT.S521541DOI Listing

Publication Analysis

Top Keywords

docking studies
8
binding energies
8
antimicrobial agents
8
antimicrobial
6
synthesis molecular
4
molecular characterization
4
characterization antimicrobial
4
antimicrobial evaluation
4
evaluation hydrazones
4
hydrazones derived
4

Similar Publications

Erythrodontium julaceum, Marchantia polymorpha, and Plagiochila bantamensis are widely distributed bryophytes in Vietnam. However, comprehensive chemical and biological data on their composition remain limited. Bio-guided isolation based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M inhibition was applied to these species, resulting in the identification of 23 metabolites.

View Article and Find Full Text PDF

Usnic acid, a compound from Usneae Filum, has shown notable antitumor effects. Nevertheless, the mechanism of its anti-NSCLC action remains incompletely elucidated. This study used metabolomics, network pharmacology, molecular docking, and dynamics simulation to investigate usnic acid's potential mechanism on NSCLC utilizing A549 cell samples.

View Article and Find Full Text PDF

Identification and antiviral mechanism of a novel chicken-derived interferon-related antiviral protein targeting PRDX1.

PLoS Pathog

September 2025

Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China.

In this study, we identified a new chicken-specific protein, named chicken interferon-related antiviral protein (chIRAP) after sequence analysis and comparison, which inhibited the proliferation of various viruses including influenza A virus (IAV) and Newcastle Disease Virus (NDV) in vitro, and chicken embryos with high expression of chIRAP reduced IAV infection. Mass spectrometry analysis of chIRAP interacting proteins and screening of interacting proteins affecting the function of chIRAP revealed that the deletion of endogenous chicken peroxiredoxin 1 (chPRDX1) significantly reduced the antiviral effect of chIRAP. In order to clarify the functional site of chPRDX1 affecting the antiviral effect of chIRAP, we constructed the point mutants of chPRDX1 based on the results of molecular docking (D79A, T90A, K93A, Q94A, R110A, R123A), and screened the sites affecting the antiviral effects of chIRAP by knockdown of endogenous chPRDX1 combined with the overexpression mutant strategy, the results showed that the mutations in the sites affected the antiviral effects of chIRAP to different degrees, with D79A being the most significant, and the D79A mutation of chPRDX1 reduces the ability of chPRDX1 to regulate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.

View Article and Find Full Text PDF

3-O-acetylrubiarbonol B preferentially targets EGFR and MET over rubiarbonol B to inhibit NSCLC cell growth.

PLoS One

September 2025

Department of Biomedicine, Health and Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan, Republic of Korea.

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths, remaining a significant challenge in terms of early detection, effective treatment, and improving patient survival rates. In this study, we investigated the anticancer mechanism of rubiarbonol B (Ru-B) and its derivative 3-O-acetylrubiarbonol B (ARu-B), a pentacyclic terpenoid in gefitinib (GEF)-sensitive and -resistant NSCLC HCC827 cells. Concentration- and time-dependent cytotoxicity was observed for both Ru-B and ARu-B.

View Article and Find Full Text PDF