98%
921
2 minutes
20
Organoid technology has become a field that attract many researcher's attention and involvement. "Organoid" is a coined word which means organ like-tissue (Organ+oid), and organoid is determined as stem cell-derived three-dimensional (3D) tissues that recapitulate developmental processes and tissue specific function in vivo. Generally, they are derived from pluripotent stem cells (PSCs) including induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), or from tissue stem cells. The first report that created human 3D cerebral tissue arose in 2008 which is currently considered as the pioneering work of "neural organoid" (Eiraku et al., 2008, Sasai 2013a, Sasai 2013b). The neural organoids provide living human neural tissues that bring opportunities to study human development, human neuroscience, neurological and psychiatric disorders, and evolutions. The neural organoid can be said as "cut & paste" of developmental biological process into a dish. Thus, understanding the background of neural organoid needs developmental knowledge, but current organoid researches looks to use organoid as a tool to study the aim that the researchers want to focus. This leads the organoid research more methodological, and the improvement or sophistication of organoid methods has still been difficult for most of new coming researchers. For this problem, this review provide insights of how to assemble organoid methods from viewpoints of development especially from morphological/structual changes. In this review, I start from the brief history of how neural organoid research emerged from developmental biology. Then I introduce some interesting aspects of neural organoid generation focusing on self-organization of regions and structures. From the viewpoint of a developer of this field, this review also show how to think and adjust the methods to generate novel regional organoids taking hippocampal organoids as an example. Regarding structural self-organization I will introduce cerebral organoid for an example of layer organization in a dish. By showing background knowledge with scientific achievements and interesting aspects, this review will help researchers who want to create novel neural organoids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejcb.2025.151496 | DOI Listing |
Med Oncol
September 2025
Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4C, Martin, 036 01, Slovakia.
Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.
View Article and Find Full Text PDFAngiogenesis
September 2025
Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha (SESCAM), 45071, Toledo, Spain.
Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Regenerative cardiology has emerged as a novel strategy to improve cardiac healing following ischemic injury. While stem-cell-mediated cardiac regeneration has garnered much attention as a promising strategy, its value remains debated owing to the lack of ideal stem cell source candidates. Resident/endogenous cardiac-derived stromal cells (CSCs) exhibit superior therapeutic potential due to their innate abilities to differentiate into cardiac cells, especially cardiomyocytes (CM).
View Article and Find Full Text PDFMed Oncol
September 2025
Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, Kolkata, India.
Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).
View Article and Find Full Text PDF