Lipidomics reveals effect of EHHADH in lung squamous cell.

Cell Biol Toxicol

Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are two major pathological types of non-small cell lung cancer (NSCLC), characterized by distinct patterns of lipid metabolism. However, the molecular mechanisms underlying lipid metabolism reprogramming specific to LUSC remain poorly understood. This study aims to fill this gap by identifying and characterizing EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) as a key regulator of medium-chain fatty acid metabolism in LUSC. The peroxisomal L-bifunctional enzyme is one of the important elements to control the peroxisomal fatty acid beta-oxidation pathway. Through high-expression genes related to lipid metabolism were identified by data mining, the expression and regulatory effects of EHHADH in different cell lines were investigated. EHHADH was highly expressed in LUSC cells and exhibited different expression patterns from those in LUAD cells. Knockdown of EHHADH in LUSC cell lines led to a marked reduction in cell proliferation. RNA sequencing following EHHADH silencing demonstrated significant changes in the expression of lipid metabolism-related genes in different cell lines, such as AZGP1, CAV1, CYP3A4, NR2F2, NR3C2, and RARG. Lipidomics analysis further demonstrated that EHHADH plays a crucial role in regulating intracellular and extracellular lipid profiles. EHHADH knockdown resulted in increased levels of long-chain fatty acids and storage lipids, while decreased levels of medium-chain fatty acids. Conversely, overexpression of EHHADH reduced long-chain fatty acids and storage lipids, while increasing specific medium-chain fatty acids. These metabolic alterations were consistent with changes in lipid metabolism-related protein expression, supporting the molecular mechanistic role of EHHADH in lipid regulation. In conclusion, EHHADH functions as an important regulator of lipid metabolism in LUSC and plays a key role in the occurrence, progression, and treatment of lung cancer. The important impact of EHHADH in lipid metabolism disorders suggests potential utility as a biomarker for diagnosis and a target for personalized treatment strategies in lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126335PMC
http://dx.doi.org/10.1007/s10565-025-10044-4DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
20
fatty acids
16
ehhadh
12
lung cancer
12
medium-chain fatty
12
cell lines
12
lipid
9
lung squamous
8
squamous cell
8
cell lung
8

Similar Publications

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF

Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.

View Article and Find Full Text PDF