98%
921
2 minutes
20
We report a neoteric study that accentuates the effectiveness of substrate-less molecular imprinted polymer (MIP) block acting as probe in detecting a carcinogenic food preservative, formalin (FOL). FOL is generally mixed with consumable products to increase their shelf-life. However, its ingestion has exposed human health to severe illnesses, comparable to chronic cancer. Present study demonstrates FOL detection through phenomenon of localized surface plasmon resonance (LSPR) alongside MIP. The LSPR spectra arising from the attributes of embedded NP's are recorded to characterize the MIP probe. There exists a wide linear range (R > 0.9) from 150 μM to 3 mM with 15.5 μM as limit of detection and 0.01395 nm/μM as the probe's sensitivity. The probe shows high imprinting factor (IF) of 6.25, and recovery percentage greater than 97 % in real sample analysis. Overall, this study presents an efficient method of monitoring food adulteration and offers features like real-time monitoring, low fabrication cost, and portability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.144873 | DOI Listing |
Anal Chem
September 2025
Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
Sulfamethoxazole (SMX) is a widely used antibiotic with toxic and persistent residues, which poses potential health risks in aquatic environments. However, reliable and accurate detection is impeded by the nonspecific adsorption of interfering biomolecules in complex matrices. This study develops a molecularly imprinted photoelectrochemical (PEC) sensor based on BiOS/BiWO with excellent selectivity and antifouling properties.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. Electronic address:
Osteopontin (OPN), a multifunctional milk protein essential for bioactive functions, remains challenging to isolate efficiently due to the limited specificity of conventional methods. We developed hydrogel-based molecularly imprinted membranes (MIMs) for selective OPN recognition. Dimethylaminopropyl methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM) were selected as functional monomers based on molecular docking and molecular dynamics (MD) simulations, ensuring optimized binding interactions.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Türkiye.
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.
View Article and Find Full Text PDFCell Discov
September 2025
Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
Adverse intrauterine environments, such as hyperglycemia, impair sexual reproduction and species continuity, yet the underlying mechanisms remain poorly understood. In this study, we demonstrated that intrauterine hyperglycemia significantly disrupted primordial germ cell (PGC) development, especially in female offspring, thus reducing fertility. Using Oct4-EGFP transgenic mice with intrauterine hyperglycemia exposure, we revealed that hyperglycemia compromised sexually specific chromatin accessibility and DNA methylation reprogramming during PGC development.
View Article and Find Full Text PDFSci Adv
September 2025
School of Engineering and Materials Science, Queen Mary University of London, UK.
During heart disease, the cardiac extracellular matrix (ECM) undergoes a structural and mechanical transformation. Cardiomyocytes sense the mechanical properties of their environment, leading to phenotypic remodeling. A critical component of the ECM mechanosensing machinery, including the protein talin, is organized at the cardiomyocyte costamere.
View Article and Find Full Text PDF