98%
921
2 minutes
20
The differentiation and stemness maintenance of stem cells are the core topics in cell biology and regenerative medicine, involving cell fate determination, developmental regulation and tissue regeneration. Chirality is an essential factor influencing multiple biological processes, including protein interactions, stem cell development and disease pathogenesis. However, its roles in regulating stem cells fate, especially limbal epithelial stem cells (LESCs), remain elusive. Herein, it is first discovered that right-handed chiral hydrogel (DH) enhanced LESCs proliferation, migration, and differentiation into corneal epithelial cells, while left-handed chiral hydrogel (LH) can partially preserve LESCs stemness. Further in vivo experiments demonstrated that 3D DH effectively accelerated corneal wound healing process, inhibited both inflammation and vascularization in a partial limbal stem cell deficiency model. Mechanistically, DH activates Notch signaling by increasing its stereo-affinity to Notch1, facilitating Notch intracellular domain release and HES1 transcription, thereby directing LESCs fate. Collectively, this work highlights the novel role of chirality in LESCs fate determination and confirms DH as a drug-free, effective approach for corneal epithelial regeneration, offering a new direction for regenerative medicine and tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376501 | PMC |
http://dx.doi.org/10.1002/advs.202504732 | DOI Listing |
J Pediatr Hematol Oncol
September 2025
Division of Pediatric Hematology-Oncology, Mayo Clinic Children's, Rochester, MN.
Post-transplant lymphoproliferative disorder is a rare and serious complication of organ and stem cell transplant secondary to immunosuppressive therapies, most commonly of monomorphic B-cell subtype. Here we describe the first reported case of a pediatric heart transplant patient who developed both monomorphic B-cell and nondestructive PTLD with plasmacytic hyperplasia followed by an unrelated case of monomorphic T-cell and nondestructive PTLD with plasmacytic hyperplasia, which later relapsed. We detail the patient's risk factors for development of PTLD and her successful treatment regimens.
View Article and Find Full Text PDFBlood Adv
September 2025
AP-HP, Hôpital Saint Louis and University of Paris, INSERM U944 and THEMA insitute, Paris, France.
Germline DDX41 mutations (DDX41mut) are identified in approximately 5% of myeloid malignancies with excess of blasts, representing a distinct MDS/AML entity. The disease is associated with better outcomes compared to DDX41 wild-type (DDX41WT), but patients who do not undergo allogeneic hematopoietic stem cell transplantation (HSCT) may experience late relapse. Due to the recent identification of DDX41mut, data on post-HSCT outcomes remain limited.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
September 2025
Nuclear Medicine, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
Pediatric pancreatic neuroblastoma is a rare cancer in children, with only limited cases available in the literature. We report a case of a 4-year-old girl diagnosed with high-risk pancreatic neuroblastoma. The girl was treated with induction chemotherapy followed by autologous stem cell transplant and maintenance with 13-cis-retinoic acid.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China.
Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).
View Article and Find Full Text PDFClin Transplant
September 2025
Centro De Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.