Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excitons, which are bound states of electrons and holes, in transition metal dichalcogenides (TMDCs) have been studied as an information carrier for realizing new types of optoelectronic devices. However, the charge neutrality of excitons inhibits the electric control of their motion, as seen in conventional electronic devices, except when utilizing a heterostructure. Here, we investigated the drift motion of trions, quasiparticles composed of an exciton bound to an excess charge, at room temperature in a suspended WS monolayer by applying a gate-tunable electric field. Using a simple bottom-gate device, we can tune the electric field intensity and exciton-to-trion conversion ratio by increasing the charge density in the monolayer. Consequently, we experimentally observed that locally excited trions drift toward the center of the suspended monolayer. To understand the underlying mechanisms, we numerically simulated the trion drift using the drift-diffusion equation, accounting for the contributions from both the electric field and strain. The results confirmed that the electric field plays the dominant role in the drift phenomena. Our work offers a useful platform for realizing trion-based optoelectronic devices that are capable of operating even at room temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116259PMC
http://dx.doi.org/10.1515/nanoph-2024-0739DOI Listing

Publication Analysis

Top Keywords

electric field
16
suspended monolayer
12
room temperature
12
trion drift
8
optoelectronic devices
8
drift
5
electric
5
on-chip manipulation
4
manipulation trion
4
drift suspended
4

Similar Publications

The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

Deep Learning Estimation of 24-2 Visual Field Map from Optic Nerve Head Optical Coherence Tomography Angiography.

J Glaucoma

September 2025

Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States.

Precis: Artificial intelligence applied to OCTA images demonstrated high accuracy in estimating 24-2 visual field maps by leveraging information from pararpapillary area.

Purpose: To develop deep learning (DL) models estimating 24-2 visual field (VF) maps from optical coherence tomography angiography (OCTA) optic nerve head (ONH) en face images.

Methods: A total of 3148 VF OCTA pairs were collected from 994 participants (1684 eyes).

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF