98%
921
2 minutes
20
Background: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS), characterized by inflammation and neurodegeneration. The pathophysiology of MS, especially its progressive forms, involves various cellular components, including microglia, the primary resident immune cells of the CNS. This review discusses the role of microglia in neuroinflammation, tissue repair, and neural homeostasis, as well as their involvement in MS and explores potential therapeutic strategies targeting microglial function.
Methods: A literature search conducted in August 2023 and updated in March 2025, using the PubMed database, focused on articles relating to microglia and MS published in 2018-2025. Additionally, ongoing clinical trials of Bruton's tyrosine kinase (BTK) inhibitors were identified through the ClinicalTrials.gov website in November 2023 and updated in March 2025.
Results: Microglia are highly adaptive and exhibit various functional states throughout different life stages and play critical roles in neuroinflammation, tissue repair, and neural homeostasis. Their altered activity is a prominent feature of MS, contributing to its pathogenesis. Imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) provide insights into microglial activity in MS. BTK inhibitors and other novel treatments for MS, including masitinib and frexalimab, show promise in modulating microglial function and influencing the disease progression rate.
Conclusions: The multifaceted roles of microglia in CNS development, immune surveillance, and particularly in the pathogenesis of MS highlight the potential of targeting microglial functions in MS treatment. Emerging research on the involvement of microglia in MS pathophysiology offers promising avenues for developing novel therapies, especially for progressive MS, potentially improving patient outcomes in this debilitating disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119304 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1495529 | DOI Listing |
J Cereb Blood Flow Metab
September 2025
Achucarro Basque Center for Neuroscience, Leioa, Spain.
Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: Traumatic brain injury (TBI), a prevalent neurological disorder worldwide, is marked by varying degrees of neurological dysfunction. A key contributor to secondary damage and impediments in the repair process is the unregulated activation of microglia, which triggers neuroinflammation. Emerging evidence highlights the therapeutic potential of transcranial pulsed current stimulation (tPCS) in mitigating neurological deficits.
View Article and Find Full Text PDFBrain Res Bull
September 2025
Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the 1(st) Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China. Electronic address:
Stroke is one of the leading causes of death and disability worldwide, with ischemic stroke accounting for the majority of cases. Intercellular communication is critical to its prognostic impact, and extracellular vesicles (EVs) are an emerging important mechanism. EVs are increasingly recognized as key mediators of crosstalk between neurons and glial cells, affecting processes such as neuroinflammation, oxidative stress and tissue repair.
View Article and Find Full Text PDFNeurosci Lett
September 2025
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China. Electronic address:
Pain and pain-related psychiatric diseases affect approximately one-third of the global population, and effective treatment remains a lack of options. NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is regarded as a potential therapeutic target for managing pain and related psychiatric diseases. Our previous research reported that 1,2,4-trimethoxybenzene (1,2,4-TTB) effectively inhibited NLRP3 inflammasome activity.
View Article and Find Full Text PDFCurr Opin Virol
September 2025
Infection Biology, Global Center for Pathogen and Human Health Research, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA. Electronic address:
Intracranial calcifications (ICCs) are a characteristic neuropathological feature of several congenital viral infections, including Zika virus (ZIKV), cytomegalovirus (CMV), and lymphocytic choriomeningitis virus (LCMV). These lesions are linked to severe neurodevelopmental outcomes, such as microcephaly, epilepsy, and cognitive deficits, yet the mechanisms underlying their formation and resolution remain unclear. ICCs are thought to arise from an imbalance in osteogenic and osteolytic signaling in the developing brain.
View Article and Find Full Text PDF