98%
921
2 minutes
20
Machine learning technology has been extensively applied in the medical field, particularly in the context of disease prediction and patient rehabilitation assessment. Acute spinal cord injury (ASCI) is a sudden trauma that frequently results in severe neurological deficits and a significant decline in quality of life. Early prediction of neurological recovery is crucial for the personalized treatment planning. While extensively explored in other medical fields, this study is the first to apply multiple machine learning methods and Shapley Additive Explanations (SHAP) analysis specifically to ASCI for predicting neurological recovery. A total of 387 ASCI patients were included, with clinical, imaging, and laboratory data collected. Key features were selected using univariate analysis, Lasso regression, and other feature selection techniques, integrating clinical, radiomics, and laboratory data. A range of machine learning models, including XGBoost, Logistic Regression, KNN, SVM, Decision Tree, Random Forest, LightGBM, ExtraTrees, Gradient Boosting, and Gaussian Naive Bayes, were evaluated, with Gaussian Naive Bayes exhibiting the best performance. Radiomics features extracted from T2-weighted fat-suppressed MRI scans, such as original_glszm_SizeZoneNonUniformity and wavelet-HLL_glcm_SumEntropy, significantly enhanced predictive accuracy. SHAP analysis identified critical clinical features, including IMLL, INR, BMI, Cys C, and RDW-CV, in the predictive model. The model was validated and demonstrated excellent performance across multiple metrics. The clinical utility and interpretability of the model were further enhanced through the application of patient clustering and nomogram analysis. This model has the potential to serve as a reliable tool for clinicians in the formulation of personalized treatment plans and prognosis assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122863 | PMC |
http://dx.doi.org/10.1038/s41598-025-93006-4 | DOI Listing |
Int J Surg
September 2025
Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.
Mol Divers
September 2025
Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492001, India.
Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.
View Article and Find Full Text PDFMol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFDrugs Aging
September 2025
Dalla Lana School of Public Health, University of Toronto, V1 06, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.
View Article and Find Full Text PDF