98%
921
2 minutes
20
Calcium trisilicate materials, including biodentine, are popular choices for dental restorations owing to their biocompatibility. However, their compressive strength often falls short of ideal levels for certain restorative procedures. This research investigates the new biodentine formulation in the market, augmented with barium oxide to improve compressive strength and examines its physical characteristics.Three distinct material groups were subjected to compressive strength testing. Group A comprised mineral trioxide aggregate (white MTA, Angelus, Londrina, Brazil), group B consisted of biodentine (Septodont, Saint-Maur-des-Fossés, France), and group C featured the new commercially available biodentine formulation in the market, Kedo Bio D+ (Kedo Dental, Chennai, India). A universal testing machine was employed to conduct the compressive strength tests under standardized conditions.Across all time intervals, group C consistently displayed the highest average compressive strength, followed by group B, while group A showed the lowest values. The differences in compressive strength between the three groups were statistically significant ( = 0.001) after 7 days. The new biodentine formulation in group C withstood the highest maximum force, approximately 1,639 N, emphasizing its superior compressive strength compared with the other materials.This study demonstrated that the incorporation of barium oxide in Bio D+ formulation significantly enhanced its compressive strength compared with conventional biodentine and MTA. Kedo Bio D+ exhibited superior mechanical properties, making it a promising material for dental restorations requiring increased strength and durability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0045-1809311 | DOI Listing |
Int J Pharm
September 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit
Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.
View Article and Find Full Text PDFBiomed Mater
September 2025
Department of Nanobiotechnology, Faculty of Biological Sciences, , Tarbiat Modares University, Tehran, P.O. Box 14115-154, Iran, Tehran, Tehran Province, 14115-154, Iran (the Islamic Republic of).
It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional (3D) bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with NHEK-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
Herein, we present a simple and novel method to prepare soybean protein isolate (SPI)-based hydrogels with good mechanical characteristics. First, SPI/DSA hydrogels were prepared using SPI and different M/G ratios (1:2, 1:1, and 2:1) of dialdehyde sodium alginate (DSA). Then, the hydrogels were immersed in CaCl2 solution to form SPI/DSA@Ca double network hydrogels.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.
High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.
View Article and Find Full Text PDFAppl Radiat Isot
September 2025
Kahramanmaraş İstiklal University, Department of Energy Systems Engineering, Kahramanmaraş, Türkiye.
The rapid advancement of three-dimensional (3D) printing technologies has significantly expanded their potential applications such as sensors and detector technology. In this study, the gamma-ray shielding performance of ulexite-doped composite resins fabricated via Digital Light Processing (DLP) 3D printing was experimentally investigated to evaluate radiation attenuation capacity. Composite resins containing different ulexite loadings (0, 1, 3, and 5 wt%) were exposed to gamma rays at energies of 356, 662, 1173, and 1333 keV to evaluate their attenuation characteristics.
View Article and Find Full Text PDF