Agricultural practices and pollinators modulate the anthosphere microbiome.

ISME Commun

Laboratory of Applied Microbiology & Biotechnology, Department of Bioscience Engineering, Antwerp University, Groenenborgerlaan 171, Antwerp 2020, Belgium.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The flower microbiome is pivotal in plant health, influencing reproductive success, fruit quality, and pathogen vulnerability. However, the impact of intensified agricultural practices on these microbial communities remains to be understood. This study examines how specific agricultural practices influence the bacterial composition of the strawberry anthosphere, focusing on cultivation intensification. Intensified systems were defined by practices such as indoor glasshouse substrate-based cultivation, increased use of plant protection products, larger cultivation areas, and reliance on managed pollinators. Using citizen science and V4 16S rRNA gene sequencing, we found that flowers in these more intensively managed systems had lower bacterial diversity, more variable microbiomes, and loss of core taxa such as and . To determine if pollinators could help mitigate these effects, we conducted exclusion experiments. In a tunnel system, we observed that foraging pollinators facilitated the dispersal of specific bacteria, such as and , and increased flower bacterial richness. However, in an open field, foraging pollinators had no significant impact. Our findings highlight the significant impact of cultivation intensification on the anthosphere microbiome and suggest that pollinators may play a role in restoring microbiome diversity. This research fills a critical gap in understanding how agricultural practices shape plant microbiomes and underscores the potential for microbe-based strategies to improve plant health in intensively managed systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118460PMC
http://dx.doi.org/10.1093/ismeco/ycaf026DOI Listing

Publication Analysis

Top Keywords

agricultural practices
16
anthosphere microbiome
8
plant health
8
cultivation intensification
8
intensively managed
8
managed systems
8
foraging pollinators
8
pollinators
6
agricultural
4
practices pollinators
4

Similar Publications

Background: Self-leadership has been associated with several positive organizational outcomes (e.g., performance and innovation).

View Article and Find Full Text PDF

This study investigates the spatial and temporal distribution and the influencing factors of 579 cultural heritage sites along the Qin-Shu Ancient Road in Shaanxi Province, employing kernel density estimation, buffer analysis, and geographic detectors. Three key findings emerge: (1) The spatial pattern is characterized by a "line-belt-core" structure, with a belt-like aggregation along the Xi'an-Baoji-Hanzhong axis. Core concentrations are found in Xi'an (181 sites), Hanzhong (159 sites), and Ankang (122 sites), with secondary concentrations in Baoji (72 sites) and Shangluo (36 sites).

View Article and Find Full Text PDF

Incorporating bioaccessibility into health risk assessments enhances the accuracy of exposure estimates for heavy metal (HM) pollution, supports targeted remediation, and informs public health and policy decisions, particularly for vulnerable populations. Because HM bioaccessibility depends on local soil and geographic characteristics, identifying its relationship with soil properties is crucial for assessing soil pollution potential. Although HM concentrations can be measured relatively easily, bioaccessibility requires complex laboratory procedures, limiting routine applications in regulatory contexts.

View Article and Find Full Text PDF

Global warming causes heat stress in livestock, impairing their health, welfare, and productivity. In bovines, chronic stress elevates cortisol levels; however, this response often goes undetected due to the lack of practical biomatrices for accurate assessment. Common biomatrices such as blood require repeated sampling that may affect measurement accuracy.

View Article and Find Full Text PDF

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF