ISME Commun
January 2025
The flower microbiome is pivotal in plant health, influencing reproductive success, fruit quality, and pathogen vulnerability. However, the impact of intensified agricultural practices on these microbial communities remains to be understood. This study examines how specific agricultural practices influence the bacterial composition of the strawberry anthosphere, focusing on cultivation intensification.
View Article and Find Full Text PDFIndoor air pollution affects the global population, especially in developed countries where people spend around 90% of their time indoors. The recent pandemic exacerbated the exposure by relying on indoor spaces and a teleworking lifestyle. VOCs are a group of indoor air pollutants with harmful effects on human health at low concentrations.
View Article and Find Full Text PDFLeaves harbor distinct microbial communities that can have an important impact on plant health and microbial ecosystems worldwide. Nevertheless, the ecological processes that shape the composition of leaf microbial communities remain unclear, with previous studies reporting contradictory results regarding the importance of bacterial dispersal versus host selection. This discrepancy could be driven in part because leaf microbiome studies typically consider the upper and lower leaf surfaces as a single entity despite these habitats possessing considerable anatomical differences.
View Article and Find Full Text PDFFEMS Microbiol Ecol
September 2022
The phyllosphere harbours a diverse and specific bacterial community, which influences plant health and ecosystem functioning. In this study, we investigated the impact of urban green areas connectivity and size on the composition and diversity of phyllosphere bacterial communities. Hereto, we evaluated the diversity and composition of phyllosphere bacterial communities of 233 Platanus x acerifolia and Acer pseudoplatanus trees in 77 urban green areas throughout 6 European cities.
View Article and Find Full Text PDFMicrobiol Spectr
August 2022
Greenhouses are highly productive environments in which conditions are regulated to optimize plant growth. The enclosed character of greenhouses usually results in reduced microbial diversity, while it is known that a diverse microbiome is important for plant health. Therefore, we explored the phyllosphere microbiome of tomatoes and strawberries grown in greenhouses.
View Article and Find Full Text PDFMicrobiol Spectr
April 2022
Every year, deciduous trees shed their leaves, and when new leaves emerge next spring, they establish a characteristic bacterial leaf community. In this exploratory study, we assessed the bacterial phyllosphere (aboveground plant surfaces) of eight London plane trees () in Antwerp and Milan by sampling weekly during leaf emergence and expansion. We sampled the surfaces of different tree compartments: leaves, leaf buds, branches, and trunk, for up to 6 weeks.
View Article and Find Full Text PDFA fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions.
View Article and Find Full Text PDFA well-known trade-off exists between plant defenses against herbivores and defenses against pathogens, but few studies incorporate the plant microbiome. A new study by Humphrey and Whiteman shows that herbivory reshapes the leaf microbiome and increases susceptibility to potential bacterial pathogens.
View Article and Find Full Text PDFThe microbial habitat on leaf surfaces, also called the phyllosphere, is a selective environment for bacteria, harbouring specific phyllosphere bacterial communities (PBCs). These communities influence plant health, plant-community diversity, ecosystem functioning and ecosystem services. Host plants in an urban environment accommodate different PBCs than those in non-urban environments, but previous studies did not address individual urban factors.
View Article and Find Full Text PDFBacterial endotoxins are a component of particulate matter (PM) with anticipated health implications, yet we know little about how host reception of endotoxin through toll-like receptor 4 (TLR4) is affected by its association with other PM components. Subsequently, we investigated the relationship between endotoxin concentration (recombinant Factor C (rFC) assay) and host recognition (HEK Blue-TLR4 NF-kB reporter cell line based assay) in various compositions of urban PM, including road traffic, industrial and urban green land use classes. While the assays did not correlate strongly between each other, the TLR4 reporter cell line was found to be better correlated to the IL-8 response of PM.
View Article and Find Full Text PDF