Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-Ni cathodes promise high energy density but suffer from interfacial degradation. Here, a dual-additive electrolyte-trimethylsilyl phosphate to scavenge HF and adiponitrile to tailor Li solvation-enables a robust, LiF-rich CEI, boosting NCM811's stability. This strategy achieves 90.16% capacity retention at 5C, offering a pathway to durable, high-performance batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc01939gDOI Listing

Publication Analysis

Top Keywords

dual electrolyte
4
electrolyte additives
4
additives achieve
4
achieve high-rate
4
high-rate cycling
4
cycling performance
4
performance lithium-ion
4
lithium-ion batteries
4
batteries high
4
high nickel
4

Similar Publications

Ultra-High Zinc Utilization Enabled by MXene Anode for Flexible Dual-Plating Zn-Br Microbatteries.

J Phys Chem Lett

September 2025

College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.

Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.

View Article and Find Full Text PDF

Background: Fluconazole-tacrolimus interactions occur, but the additional effect of ritonavir is emphasized here, underscoring the need for careful prescription reconciliation in renal transplant recipients living with HIV-AIDS to prevent accidental ritonavir coadministration and inadvertent tacrolimus toxicity. The findings provide valuable insight for therapeutic drug monitoring (TDM) specialists. Patient informed consent was obtained for publication of the anonymized data.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

The formation and recrystallization of ice crystals during freezing causes irreversible structural damage to the dough matrix, which is characterized by the cold denaturation of the gluten protein structure and the degradation of the gluten network structure. Polysaccharides are widely used to improve the quality of frozen dough owing to their excellent water-holding and viscosity. Current research has shown that polysaccharides mitigate the physical damage of ice crystals on the gluten protein structure mainly by modifying the water status of frozen dough to inhibit the ice crystallization process.

View Article and Find Full Text PDF