DiffBTS: A Lightweight Diffusion Model for 3D Multimodal Brain Tumor Segmentation.

Sensors (Basel)

School of Educational Sciences, Hunan Normal University, No. 36, Lushan Road, Changsha 410081, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Denoising diffusion probabilistic models (DDPMs) have achieved remarkable success across various research domains. However, their high complexity when processing 3D images remains a limitation. To mitigate this, researchers typically preprocess data into 2D slices, enabling the model to perform segmentation in a reduced 2D space. This paper introduces DiffBTS, an end-to-end, lightweight diffusion model specifically designed for 3D brain tumor segmentation. DiffBTS replaces the conventional self-attention module in the traditional diffusion models by introducing an efficient 3D self-attention mechanism. The mechanism is applied between down-sampling and jump connections in the model, allowing it to capture long-range dependencies and global semantic information more effectively. This design prevents computational complexity from growing in square steps. Prediction accuracy and model stability are crucial in brain tumor segmentation; we propose the Edge-Blurring Guided (EBG) algorithm, which directs the diffusion model to focus more on the accuracy of segmentation boundaries during the iterative sampling process. This approach enhances prediction accuracy and stability. To assess the performance of DiffBTS, we compared it with seven state-of-the-art models on the BraTS 2020 and BraTS 2021 datasets. DiffBTS achieved an average Dice score of 89.99 and an average HD95 value of 1.928 mm on BraTS2021 and 86.44 and 2.466 mm on BraTS2020, respectively. Extensive experimental results demonstrate that DiffBTS achieves state-of-the-art performance in brain tumor segmentation, outperforming all competing models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115081PMC
http://dx.doi.org/10.3390/s25102985DOI Listing

Publication Analysis

Top Keywords

brain tumor
16
tumor segmentation
16
diffusion model
12
lightweight diffusion
8
prediction accuracy
8
diffbts
6
model
6
segmentation
6
diffusion
5
diffbts lightweight
4

Similar Publications

Early postoperative seizures, defined as occurring within 7 days after surgery, are a significant complication that occurs following neurosurgical procedures involving cerebral manipulation. As a result, short-term antiseizure medication is typically administered in Japan despite the lack of consensus regarding its prophylactic use. Perampanel hydrate, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, was recently introduced in an intravenous formulation in Japan, providing new potential for early postoperative seizures prevention during the perioperative period.

View Article and Find Full Text PDF

Glioblastoma (GB), IDH-wildtype (IDH-wt), is the most prevalent primary malignant brain neoplasm in adults. Despite adjuvant therapy, the prognosis for these tumors remains dismal, with a median survival of around 15-18 months. Although rare, extracranial metastases from GB are reported with increasing frequency, likely due to advancements in follow-up, treatments, and improved patient survival.

View Article and Find Full Text PDF

One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a rapidly progressing brain malignancy, with its progression closely tied to a hypoxic microenvironment. Hypoxia-inducible factor-1α (HIF-1α) acts as a vital regulator in tumor adaptation to low oxygen levels, and its relationship with the Wnt/β-catenin signaling pathway exerts significant functions in the malignant properties of GBM. In this research, Western blot and qRT-PCR were applied to check β-catenin and HIF-1α expression in GBM.

View Article and Find Full Text PDF

Diagnostic Value of Centrally Restricted Diffusion in Differentiating Radiation Necrosis from Tumor Progression in Brain Metastases: A Single-Center Observational Study.

J Neuroradiol

September 2025

Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon. 59 Bd Pinel, 69500, Bron, France; CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University. 7 avenue Jean Capelle O, 69100, Villeurbanne, France. Electronic address:

Background: Distinguishing radiation necrosis (RN) from true progression (TP) in irradiated brain metastases is challenging. We evaluated the diagnostic performance of the centrally restricted diffusion sign on diffusion-weighted imaging (DWI).

Methods: From August 2014 to August 2024, we screened 321 patients with histologically confirmed brain metastases treated with radiation therapy and follow-up MRI for new or enlarging necrotic lesions ≥1 cm.

View Article and Find Full Text PDF