98%
921
2 minutes
20
NAC transcription factors are a kind of plant specific transcription factor widely distributed in plants, and they play an important role in the process of plant growth and development. According to the transcriptome data, a transcription factor with typical NAC characteristics was isolated from (common name "Dahurian larch"), that we named . The length of the coding sequence (CDS) was 1164 bp, encoding 387 amino acids. The LoNAC5 protein harbors a NAM (NAC family) domain at the 14-139 aa region of its N-terminus and an activation domain at the 324-364 aa region of the C-terminus. Phylogenetic tree analysis revealed that belonged to the ATNAC3 subgroup. Cis-acting element analysis showed that there were multiple plant stress-resistance-related elements on the promoter of , including hormone and light responsiveness elements. was localized in the nucleus by injection transformation of tobacco leaves. Results suggested that the LoNAC5 protein is active as a homodimer and that it binds to the GATGTG motif. The results of RT-qPCR showed that is a highly expressed gene in , and the expression level is highest in 180-day needles. responded to various hormone treatments and was induced by drought and salt stress. The yeast phenotype test showed that overexpression of could make yeast grow better under drought and salt stress. It was speculated that might act in as a positive regulator of drought and salt tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114694 | PMC |
http://dx.doi.org/10.3390/plants14101527 | DOI Listing |
Food Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFNew Phytol
September 2025
Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, 85721, USA.
Trees harbor large stores of nonstructural carbohydrates, some of which are quite old (> 10 yr), yet we know little of how these older stores may be used for woody growth. Crucially, the use of old carbohydrates during cellulose biosynthesis could confound climate reconstructions that rely on tree ring stable isotope ratios. We analyzed tree-ring cellulose ΔC and δC in earlywood of two pine species from montane forests in western North America using tree rings produced during the radiocarbon bomb pulse (1966-1980).
View Article and Find Full Text PDFJ Integr Plant Biol
September 2025
Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.
Hyperosmolality-triggered physiological drought hinders plant growth and development, leading to a drop in crop yields. Hyperosmolality triggers calcium signaling, and yet how osmotic-induced calcium signaling participates in cellular osmotic response remains enigmatic. To date, several Ca channels and transporters have been identified to regulate osmotic-induced calcium signal generation (CaSG) or Ca homeostasis.
View Article and Find Full Text PDFPlant Sci
September 2025
Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China. Electronic address:
Salt stress is one of the main abiotic stresses that affects plant growth and development, as well as crop yield. A large number of studies have reported that the WRKY gene family plays significant roles in the plant responses to salt stress, but the underlying mechanisms remain largely unknown, and research on WRKY proteins in sorghum is also limited. In this study, we identified the sorghum gene SbWRKY51, which encodes a group II WRKY transcription factor.
View Article and Find Full Text PDF