Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a theoretical basis for other breeders to predict the trait performance of their hybrid progeny when selecting Eastern pear and Western pear as parents. Our research team constructed a 'Yuluxiang' × 'Xianghongli' interspecific hybrid population in 2015, and in 2023, we conducted a two-year investigation of 16 traits in 140 hybrid progeny, including 11 fruit traits and 5 growth traits, and analyzed and compared the genetic variation and heterosis of traits, as well as the correlation between various traits. The results showed that the hybrid progeny was widely segregated for single fruit weight (FW), soluble solid (SS) content, and titratable acid (TA) content and conformed to a normal distribution, with quantitative genetic traits under polygenic control. The highest two-year coefficients of variation for TA were 54.42% in 2023 and 39.17% in 2024. A genetic trend of decreasing FW was observed, which was greatly influenced by the male sex. The ratio of soft soluble flesh to crispy flesh was 1:1, and the gene controlling this trait may be a quality trait controlled by a single gene. The traits that showed transgressive heterosis for two years included fruit longitudinal diameter (FLoD), fruit shape index (FSI), and TA, and those that showed negative heterosis included FW, SS, leaf longitudinal diameter (LLoD), and leaf lateral diameter (LLaD). Correlation analysis indicated that the progeny of crosses in this combination, which had red fruit skin, may also present red early flowering color (EFC) and young leaf color (YLC), reddish brown annual branch color (ABC), and lower FSI, fruit stalk length (FSL), LLaD, and TA. Thus, at the seedling stage, individuals with red-colored fruit may be screened by observing the color of young leaves and young stems and the lateral diameter of the leaves. Principal component analysis showed that among the 16 traits included in six principal components, peel color (PC), FLoD, 2024SS, fruit tape (FT), and FSI were the main factors causing differences in fruit phenotypes. This study systematically elucidated the genetic trends of agronomic traits in pears and will provide a theoretical basis for the selection of parents and early selection of hybrid progeny in pear hybrid breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115335 | PMC |
http://dx.doi.org/10.3390/plants14101491 | DOI Listing |