Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Solution processing represents a widely adopted methodology for perovskite solar cell (PSC) fabrication. Nevertheless, the prevalent use of toxic solvents and anti-solvents in conventional approaches presents significant challenges for PSC commercialization. Water, as an environmentally benign solvent with exceptional Pb(NO) solubility, offers a promising alternative for perovskite film preparation. However, the sluggish conversion kinetics of Pb(NO) to perovskite often results in morphological imperfections and incomplete conversion, particularly detrimental to planar inverted PSCs derived from aqueous solutions, which currently exhibit limited power conversion efficiencies (PCE) of approximately 6%. To mitigate the Ostwald ripening effect induced by slow reaction kinetics and enhance the conversion efficiency of deep-layer Pb(NO) and PbI, this study proposes a strategy of increasing the pore size in porous Pb(NO) structures. Through the incorporation of sodium dodecyl sulfonate (SDS) surfactant into the Pb(NO) precursor solution, we successfully fabricated high-quality perovskite films. Comprehensive characterization revealed that SDS doping effectively modified the surface properties of Pb(NO) films, accelerating their conversion to perovskite. The optimized PSCs based on SDS-modified perovskite films demonstrated improved energy level alignment, enhanced charge carrier extraction, and suppressed non-radiative recombination. Consequently, the PCE of planar inverted aqueous PSCs increased significantly from 12.27% (control devices) to 14.82% following surfactant modification. After being stored in a nitrogen glove box for 800 h, the performance of the device still remained above 90% of its original level. It can still maintain 60% of its original performance after a 100 h heating aging test at 80 degrees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114574 | PMC |
http://dx.doi.org/10.3390/molecules30102146 | DOI Listing |