98%
921
2 minutes
20
The recent reemergence of the monkeypox pandemic in non-endemic regions has raised serious concerns regarding the possibility of a global outbreak. The study employed various modules of the Schrodinger suite through Maestro V 14.1 for molecular docking, MD simulations, MM-GBSA, and FMO. To explore the drug potential of against the key proteins of the Mpox virus: E5, poxin, and DNA polymerase, a total of 982 chemical constituents belonging to this herbal formulation were investigated. The molecular docking studies revealed that chlorogenic acid, chebulic acid, rosmarinic acid, and citric acid had high binding affinities for E5, with docking scores of -13.3289, -11.3933, -9.8999, and -9.59471 kcal/mol, respectively. Likewise, caffeic acid, citric acid, and plumbagic acid have good binding affinities for poxin with docking scores of -8.49023, -6.80386 and -5.91719 kcal/mol, respectively. Plumbagic acid and delphinidin have considerable binding affinities for DNA polymerase with docking scores of -7.57867 and -7.55301 kcal/mol, respectively. In the MD simulation, chlorogenic acid, chebulic acid, citric acid, and rosmarinic acid exhibited remarkable stability with strong binding affinities for the E5, poxin and DNA polymerase. We further explored the stability of the E5 complexes by calculating the binding free energy every 20 ns for 100 ns. The ΔG bind values of chlorogenic acid, chebulic acid, and rosmarinic acid were 61.10, 78.14, and 75.49 kcal/mol at 0 ns. Hence, the research suggests that this formulation has antiviral potential against Monkeypox and can be used to inhibit viral replication in hosts and boost the antiviral immune response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113122 | PMC |
http://dx.doi.org/10.3390/life15050771 | DOI Listing |
EMBO Rep
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.
View Article and Find Full Text PDFInt J Environ Health Res
September 2025
Department of Epidemiology, School of Public Health, Shanxi Medical University, Jinzhong, China.
The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Genetics, Comenius University Bratislava, Faculty of Natural Sciences, Ilkovičova 6, 842 15 Bratislava, Slovakia.
Poly (ADP-ribose) polymerases (PARPs) are enzymes catalyzing the post-translational addition of chains of ADP-ribose moieties to proteins. In most eukaryotic cells, their primary protein targets are involved in DNA recombination, repair, and chromosome maintenance. Even though this group of enzymes is quite common in both eukaryotes and prokaryotes, no PARP homologs have been described so far in ascomycetous yeasts, leaving their potential roles in this group of organisms unexplored.
View Article and Find Full Text PDFBackground: To improve the molecular diagnostic yield for Aspergillus spp. from respiratory samples, we developed and evaluated a new DNA extraction method directly from respiratory samples combined with in-house Aspergillus real-time PCR.
Methods: We developed a method using beads and resin, where a sample is centrifuged to separate the supernatant and pellet.
Biotechnol Bioeng
September 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.
View Article and Find Full Text PDF