Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological degradation effectively removes benzo(a)pyrene (BaP) from contaminated soil; however, knowledge regarding the contributions of plant absorption, microbial degradation, and volatilization to BaP removal remains limited. In this study, the BaP removal pathway in contaminated soil was investigated. The structural evolution of the microbial community in contaminated soil was revealed using a comparative experimental study. BaP, as a representative of high-molecular-weight polycyclic aromatic hydrocarbons, was removed from freshly contaminated soil by microbial degradation, plant absorption, and volatilization in proportions of 20.955%, 12.771%, and 0.005%, respectively. The proportions of BaP removed by microbial degradation, plant absorption, and volatilization in aged contaminated soil were 29.471%, 16.453%, and 0.004%. Microbial degradation was the most responsible mechanism for BaP removal. Moreover, a higher number of BaP degrading bacteria occurred in the aged contaminated soil. At the genus level, and were detected in both types of soils, being the key bacterial species involved in BaP degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115903PMC
http://dx.doi.org/10.3390/toxics13050405DOI Listing

Publication Analysis

Top Keywords

contaminated soil
28
microbial degradation
16
plant absorption
12
bap removal
12
bap
8
study bap
8
degradation plant
8
absorption volatilization
8
aged contaminated
8
contaminated
7

Similar Publications

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

Urban-impacted river pollutant sources: WQI ranking and PMF analysis.

Environ Monit Assess

September 2025

School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.

A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.

View Article and Find Full Text PDF

The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.

View Article and Find Full Text PDF

Long-range PM pollution and health impacts from the 2023 Canadian wildfires.

Nature

September 2025

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.

Smoke from extreme wildfires in Canada adversely affected air quality in many regions in 2023. Here we use satellite observations, machine learning and a chemical transport model to quantify global and regional PM (particulate matter less than 2.5 μm in diameter) exposure and human health impacts related to the 2023 Canadian wildfires.

View Article and Find Full Text PDF

Unveiling Condensed Aromatic Amines as Noteworthy Genotoxic Components in PM Dissolved Organic Matter.

Environ Sci Technol

September 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

The potential of PM to cause lung cancer has been well established; however, evidence regarding which specific components are responsible remains limited. We investigated dissolved organic matter (DOM) in PM using high-resolution mass spectrometry (HRMS) and cellular DNA damage assays to elucidate molecular composition and sources of carcinogenic components. Our analysis revealed hundreds of genotoxic compounds, with condensed aromatic amines predominating in number, abundance, and contribution to overall genotoxicity.

View Article and Find Full Text PDF