98%
921
2 minutes
20
The identification of filamentous fungi by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) represents a challenge due to their complex taxonomy and the lack of comprehensive databases. The aim of this study was to evaluate the current status of available MALDI-TOF MS databases for the identification of dermatophytes, including commercial, in-house, and web-based databases. We collected 289 dermatophyte strains from different centers and analyzed them using four databases and a combination of them. The combination of commercial and in-house databases was shown to improve the identification rate and accuracy at the species level. For , the concordance among all databases was above 90.0%. For the group, correct identification at the species level ranged from 30.0 to 78.9%, depending on the database, and showed very low agreement among them. The addition of the novel species to our in-house database resulted in the successful identification of this species. On the other hand, and were the species most frequently misidentified by MALDI-TOF MS. Through deep spectra analysis of both species, up to 29 protein peaks were found to be suitable for their differentiation, demonstrating the potential of peak analysis in differentiating closely related species. In conclusion, improvements of the databases with new strains resulted in increased identification accuracy at the species level. This, combined with peak analysis, could improve the overall identification of dermatophytes by MALDI-TOF MS in clinical laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12113325 | PMC |
http://dx.doi.org/10.3390/jof11050356 | DOI Listing |
Int J Syst Evol Microbiol
September 2025
School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
Two yeast strains, PYCC 10015 and PYCC 10016, were isolated from soil from an Irish forest. Sequence analysis of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of the rRNA gene repeat, and the D1/D2 domain of the LSU rRNA gene, showed that they belong to the and genera of the order , but they did not exactly match any known species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDFFASEB J
September 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.
View Article and Find Full Text PDFMed Vet Entomol
September 2025
Laboratorio de Inmunología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, México.
The study of population dynamics in a vertical forest gradient provides basic information on the aspects of insect vector natural history that influence the rate of pathogen transmission. In Mexico, these studies are remarkably limited for sand flies recognised as Leishmania vectors. This study analyses the temporal dynamics of sand fly species (Diptera: Psychodidae) along vertical strata of a tropical dry forest in Yucatán, Mexico, an area previously identified as a transmission hotspot for Leishmania mexicana.
View Article and Find Full Text PDF