Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient extraction and classification of fault features remain critical challenges in planetary gearbox fault diagnosis. A fault diagnosis framework is proposed that integrates hierarchical refined composite multiscale fuzzy entropy (HRCMFE) for feature extraction and a gray wolf optimization (GWO)-optimized least squares support vector machine (LSSVM) for classification. Firstly, the HRCMFE is developed for feature extraction, which combines the segmentation advantage of hierarchical entropy (HE) and the computational stability advantage of refined composite multiscale fuzzy entropy (RCMFE). Secondly, the hyperparameters of LSSVM are optimized by GWO using a proposed fitness function. Finally, fault diagnosis of the planetary gearbox is achieved by the optimized LSSVM using the HRCMFE-extracted features. Simulation and experimental study results indicate that the proposed method demonstrates superior effectiveness in both feature discriminability and diagnosis accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12111437PMC
http://dx.doi.org/10.3390/e27050512DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
16
planetary gearbox
12
refined composite
12
composite multiscale
12
multiscale fuzzy
12
fuzzy entropy
12
diagnosis planetary
8
hierarchical refined
8
optimized lssvm
8
feature extraction
8

Similar Publications

Class incremental learning (CIL) offers a promising framework for continuous fault diagnosis (CFD), allowing networks to accumulate knowledge from streaming industrial data and recognize new fault classes. However, current CIL methods assume a balanced data stream, which does not align with the long-tail distribution of fault classes in real industrial scenarios. To fill this gap, this article investigates the impact of long-tail bias in the data stream on the CIL training process through the experimental analysis.

View Article and Find Full Text PDF

Fault identification for rolling bearing based on ITD-ILBP-Hankel matrix.

ISA Trans

August 2025

School of Automation, Shenyang Aerospace University, Shenyang, Liaoning Province 110136, China. Electronic address:

When a failure occurs in bearings, vibration signals are characterized by strong non-stationarity and nonlinearity. Therefore, it is difficult to sufficiently dig fault features. 1D local binary pattern (1D-LBP) has the advantageous feature to effectively extract local information of signals.

View Article and Find Full Text PDF

Bearing fault diagnosis based on Kepler algorithm and attention mechanism.

PLoS One

September 2025

School of Mechanical and Electrical Engineering, ningde normal university, Ningde City, Fujian Province, China.

As a crucial component in rotating machinery, bearings are prone to varying degrees of damage in practical application scenarios. Therefore, studying the fault diagnosis of bearings is of great significance. This article proposes the Kepler algorithm to optimize the weights of neural networks and improve the diagnostic accuracy of the model.

View Article and Find Full Text PDF

Breast cancer is highlighted in recent research as one of the most prevalent types of cancer. Timely identification is essential for enhancing patient results and decreasing fatality rates. Utilizing computer-assisted detection and diagnosis early on may greatly improve the chances of recovery by accurately predicting outcomes and developing suitable treatment plans.

View Article and Find Full Text PDF

Misalignment is among the most frequent mechanical faults in rotating electrical machines, often resulting in partial or complete motor failure over time. To tackle this issue, the present study proposes an innovative methodology for diagnosing misalignment faults in rotating electrical machines. The method integrates the dual-tree complex wavelet transform with a refined composite multiscale fluctuation dispersion entropy algorithm (DTCWT-RCMFDE) for feature extraction, combined with the least-squares support vector machines algorithm (LSSVM) for fault classification.

View Article and Find Full Text PDF