Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Osteoporosis is a bone disease characterised by low bone mass, deterioration of bone tissue, and disruption of bone microarchitecture. MicroRNAs have been found to play an important role in osteoporosis. MicroRNA (miR)-494 is inhibited during bone angiogenesis, and its overexpression reduces osteogenic differentiation gene expression. Sirtuin 1 (Sirt1) is a histone deacetylase with multiple cellular activities including increasing bone mass and delaying the onset of osteoporosis. MiR-494-3p has been predicted in computer-assisted bioinformatics analysis to target the 3'UTR of Sirt1 mRNA. The aim of the present study was to assess the effect of miR-494-3p on ovariectomy (OVX)-induced osteoporosis in rats and the relevant mechanisms.

Material And Methods: Osteoporosis in female rats was induced by OVX, and bone microarchitectural changes were evaluated by means of microCT. MiR-494-3p and Sirt1 expression in femurs were evaluated by RT-qPCR or Western blotting. Bone marrow mesenchymal stem cells (BMSCs) were isolated from rat femurs and identified by flow cytometry. Then, BMSCs were transfected with miR-494-3p inhibitor/mimic, si-Sirt1 and negative controls as well as pcDNA3.1-TLR4 and empty pcDNA3.1 vector. Osteogenic cell differentiation was assessed via Alizarin Red, alkaline phosphatase (ALP) and Oil Red O staining.

Results: MiR-494-3p level was upregulated, and Sirt1 mRNA and protein levels were downregulated, in femurs of OVX rats. Functionally, miR-494-3p inhibited osteogenic differentiation of cultured rat BMSCs. Mechanistically, miR-494-3p regulated the Sirt1 3'UTR to activate TLR4/NF-κB signalling, and Sirt1 inhibition and TLR4 overexpression reversed the enhancing effect of miR-494-3p knockdown on osteogenic differentiation.

Conclusions: MiR-494-3p represses osteogenic differentiation of BMSCs in OVX rats through Sirt1/TLR4/NF-κB signalling.

Download full-text PDF

Source
http://dx.doi.org/10.5603/fhc.104450DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
mir-494-3p
10
bone
9
mir-494-3p knockdown
8
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
stem cells
8
bone mass
8
sirt1 mrna
8

Similar Publications

Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.

View Article and Find Full Text PDF

Background: Ossification of the posterior longitudinal ligament (OPLL) is a pathological condition characterized by ectopic ossification of spinal ligaments, primarily driven by abnormal osteogenic differentiation of ligament fibroblasts with stem cell-like properties. The SOX transcription factor family is crucial in regulating cell stemness and differentiation. Among them, SOX8 is known to influence osteoblast differentiation, but its role in OPLL remains unclear.

View Article and Find Full Text PDF

Enhanced rotator cuff tendon-bone interface regeneration with injectable manganese-based mesoporous silica nanoparticle-loaded dual crosslinked hydrogels.

Front Bioeng Biotechnol

August 2025

Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China.

Introduction: During the healing process, the functional gradient attachment of the rotator cuff (RC) tendon-bone interface fails to regenerate, which severely impedes load transfer and stress dissipation, thereby increasing the risk of retears. As a result, the treatment of rotator cuff tears remains a significant clinical challenge.

Methods: In this study, a dual-crosslinked hyaluronic acid/polyethylene glycol (HA/PEG) hydrogel scaffold was synthesized using hyaluronic acid and polyethylene glycol as base materials.

View Article and Find Full Text PDF

Umbilical cord blood-derived exosomes deliver miR-182-5p to Therapeutically target the MYD88/NF-κB signaling pathway in rat peri-implantitis.

Mater Today Bio

October 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Peri-implantitis (PI) is a major cause of implant restoration failure, necessitating therapeutic strategies that integrate bone regeneration and anti-inflammatory effects. Despite advances in treatment, no existing agents simultaneously address both objectives. Exosomes (Exos), as key mediators of intercellular communication, have demonstrated dual anti-inflammatory and osteogenic capacities through microRNA (miRNA) delivery; however, their potential in PI therapy remains unexplored.

View Article and Find Full Text PDF