Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aim: Sideroflexin 1 (SFXN1) is an important inner mitochondrial membrane protein that regulates many physiological and pathological events. However, the role of SFXN1 in cerebral ischemia-reperfusion (I/R)-induced neuronal death remains unclear.
Methods: We employed in vivo injury models of transient middle cerebral artery occlusion (tMCAO) and in vitro models of lipopolysaccharide (LPS) stimulation and oxygen-glucose deprivation/reperfusion (OGD/R) to investigate the regulatory effects of SFXN1 on neuroinflammation and brain injury. Western blotting, immunofluorescence, and real-time quantitative PCR were utilized to assess SFXN1 expression, proinflammatory signaling pathways activation, and cytokine levels in vitro. Cerebral infarction was evaluated using 2,3,5-triphenyltetrazolium chloride (TTC) staining and Nissl staining.
Results: SFXN1 expression was upregulated following cerebral I/R injury. Both neurons and microglia exhibited increased SFXN1 expression after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. SFXN1 knockdown reduced OGD/R-induced neuronal death and alleviated cerebral I/R injury. Additionally, conditioned medium from SFXN1-knockdown microglia reduced neurotoxicity in vitro. Mechanistically, SFXN1 induced mitochondrial dysfunction and neuronal death after OGD/R in an iron-independent manner. Furthermore, SFXN1 promoted the production of proinflammatory cytokines by promoting NF-κB activation, partially through iron transport in microglia after OGD/R.
Conclusion: This study reveals the novel role of SFXN1 in exacerbating cerebral I/R injury by reducing neuronal survival through the modulation of mitochondrial function and promotion of microglia-mediated neuroinflammation via NF-κB activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106369 | PMC |
http://dx.doi.org/10.1111/cns.70457 | DOI Listing |