98%
921
2 minutes
20
A novel virus, tentatively named "Fusarium fujikuroi negative-strand RNA virus 1" (FfNSRV1), was identified in a Fusarium fujikuroi strain isolated from a small brown planthopper. The FfNSRV1 genome consists of three negative-sense, single-stranded RNA segments (RNA1-3) with lengths of 6649, 1609, and 1380 nt, respectively. The viral complementary (vc) strand (positive sense) of RNA1 encodes a large protein (∼252 kDa) containing a conserved domain of the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with the highest sequence similarity (40-44% identity) to the RdRPs encoded by established members of the genus Coguvirus in the family Phenuiviridae. The RNA2 vc strand encodes a protein (∼54 kDa) showing sequence similarity (38-40% identity) to the movement protein-like (MP-L) proteins of coguviruses. The RNA3 vc strand encodes a protein (∼44 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Interestingly, the RNA2 and RNA3 segments (negative sense) each also contain an open reading frame (ORF) that overlaps with the ORF in the vc strand. The protein encoded by the RNA2 negative-strand ORF shows a low degree of sequence similarity (23-30% identity) to the MP-L proteins of unassigned phenuiviruses, and the protein encoded by the RNA3 negative-strand ORF shows a low degree of similarity (26-29% identity) to the nucleocapsid proteins of established members of the genus Bocivirus in the family Phenuiviridae. Phylogenetic analysis based on RdRP sequences showed that FfNSRV1 clustered with coguviruses, but in a separate monophyletic clade. Our results suggest that FfNSRV1 should be placed in a new genus within the family Phenuiviridae due to its unusual tripartite ambisense genome organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-025-06311-8 | DOI Listing |
JCI Insight
September 2025
Division of Nephrology, Boston University Chobanian & Avedisian School of Medicine, Boston, United States of America.
Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.
Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.
Appl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, United States.
Nucleosome repositioning is essential for establishing nucleosome-depleted regions to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogeneously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome-positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFJ Anim Sci
September 2025
USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933 USA.
Low-coverage sequencing refers to sequencing DNA of individuals to a low depth of coverage (e.g., 0.
View Article and Find Full Text PDFAPMIS
September 2025
Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.
Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.
View Article and Find Full Text PDF