Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Ideal silicon negative electrodes for high-energy lithium-ion batteries are expected to feature high capacity, minimal expansion, long lifespan, and fast charging. Yet, engineered silicon materials face a fundamental paradox associated with particle deformation and charge transfer, which hinders the industrial use of advanced silicon electrode materials. Here we show a sieving-pore design for carbon supports that overcomes these mechano-kinetic limitations to enable stable, fast (de)alloying chemistries of silicon negative electrodes. Such a sieving-pore structure features an inner nanopore body with reserved voids to accommodate high-mass-content silicon deformation and an outer sub-nanopore entrance to induce both pre-desolvation and fast intrapore transport of ions during cycling. Importantly, the sieving effect yields inorganic-rich solid electrolyte interphases to mechanically confine the in-pore silicon, producing a stress-voltage coupling effect that mitigates the formation of detrimental crystalline LiSi. As a result, this design enables low electrode expansion (58% at the specific capacity of 1773 mAh g and areal capacity of 4 mAh cm), high initial/cyclic Coulombic efficiency (93.6%/99.9%), and minimal capacity decay (0.015% per cycle). A practical pouch cell with such a sieving-pore silicon negative electrode delivers 80% capacity retention over 1700 cycles at 2 A as well as a 10-min fast charging capability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104450 | PMC |
http://dx.doi.org/10.1038/s41467-025-60191-9 | DOI Listing |