98%
921
2 minutes
20
Background: Human epidermal growth factor receptor 2 (HER2) is a crucial determinant of breast cancer prognosis and treatment options. The study aimed to establish an MRI-based habitat model to quantify intratumoral heterogeneity (ITH) and evaluate its potential in predicting HER2 expression status.
Methods: Data from 340 patients with pathologically confirmed invasive breast cancer were retrospectively analyzed. Two tasks were designed for this study: Task 1 distinguished between HER2-positive and HER2-negative breast cancer. Task 2 distinguished between HER2-low and HER2-zero breast cancer. We developed the ITH, deep learning (DL), and radiomics signatures based on the features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Clinical independent predictors were determined by multivariable logistic regression. Finally, a combined model was constructed by integrating the clinical independent predictors, ITH signature, and DL signature. The area under the receiver operating characteristic curve (AUC) served as the standard for assessing the performance of models.
Results: In task 1, the ITH signature performed well in the training set (AUC = 0.855) and the validation set (AUC = 0.842). In task 2, the AUCs of the ITH signature were 0.844 and 0.840, respectively, which still showed good prediction performance. In the validation sets of both tasks, the combined model exhibited the best prediction performance, with AUCs of 0.912 and 0.917 respectively, making it the optimal model.
Conclusion: A combined model integrating clinical independent predictors, ITH signature, and DL signature can predict HER2 expression status preoperatively and noninvasively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2025.110429 | DOI Listing |
Int J Dermatol
September 2025
Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.
Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.
Research (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
RSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDFMater Today Bio
October 2025
School of Pharmacy, Henan Medical University, Xinxiang, Henan, China.
Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.
View Article and Find Full Text PDF