Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The incidence of prostate cancer (PCa) is high among elderly men. Cepharanthine hydrochloride (CH) is recognized for its important role in the prevention and treatment of various diseases. However, its effects and mechanisms of action in the context of PCa remain unclear. Our study aims to examine the therapeutic role and mechanisms of action of CH in PCa. Targets of CH and PCa-related genes were identified using different databases, and the biological processes through which CH might exert its therapeutic effects were predicted via protein-protein interaction (PPI) network and enrichment analyses. Subsequently, the PCa cell lines PC-3 and DU145 were used to assess the concentration- and time-dependent effects of CH on cell viability, proliferation, and migration. Transcriptomic sequencing and differential expression analysis were used to identify the key target protein of CH and the key signaling pathways involved in its therapeutic effects against PCa. Molecular docking was used to analyze the binding between CH and its target protein. Additionally, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, gene knockout, pharmacological intervention, and tumor formation experiments were performed to validate the therapeutic effects and mechanisms of action of CH against PCa in vitro and in vivo. Network pharmacology showed that CH, a Chinese herbal medication, might prevent PCa by regulating protein phosphorylation-related biological processes. In vitro experiments showed that CH inhibited the proliferation and migration of PCa cells in a concentration-dependent manner. In addition, integration of transcriptomic sequencing, differential expression analysis, and GO enrichment analysis suggested that the ERK protein played a crucial role in the anti-tumor activity of CH. Molecular docking and molecular dynamics simulations revealed strong binding affinities between CH and ERK1/2. Further experimental verification, involving qRT-PCR, western blotting, gene knockout, pharmacological intervention, and tumor formation experiments, demonstrated that CH upregulated dual-specificity phosphatase (DUSP) 1 and suppressed the phosphorylation of ERK, thereby inhibiting the development and progression of PCa in vivo and in vitro. In conclusion, the findings of this study suggest that CH suppresses the ERK signaling pathway by enhancing the expression of DUSP1, thereby exerting anti-tumor effects against PCa in vitro and in vivo. Therefore, CH may serve as a novel therapeutic agent for PCa, showing remarkable potential for clinical application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103559PMC
http://dx.doi.org/10.1038/s41598-025-03004-9DOI Listing

Publication Analysis

Top Keywords

mechanisms action
12
therapeutic effects
12
pca
11
network pharmacology
8
experimental verification
8
cepharanthine hydrochloride
8
prostate cancer
8
effects mechanisms
8
action pca
8
biological processes
8

Similar Publications

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Antibacterial and antiviral properties of punicalagin (Review).

Med Int (Lond)

August 2025

Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.

Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

Evaluating Tuskegee University's Ongoing Response Strategy to Mitigate Direct and Indirect Impacts of the COVID-19 Pandemic by Using an Integrative Framework Analysis.

J Healthc Sci Humanit

January 2024

Program Manager, Center for Biomedical Research/Research Centers in Minority Institutions (TU CBR/RCMI), Department of Biology, College of Arts and Sciences (CAS), Tuskegee University, Phone: (334) 724-4391, Email:

The emergence of the Novel COVID-19 Pandemic has undoubtedly impacted the lives of individuals across the globe. It has drawn the attention of major public health agencies as they work intensely towards understanding the behavior of the virus causing the disease, while simultaneously establishing ways to curb the spread of the virus among populations. As of the time of writing, 7,949,973 confirmed cases have been reported globally; with the United States (US) contributing to 26.

View Article and Find Full Text PDF

Diabetic wounds present persistent challenges due to impaired healing, recurrent infection, oxidative stress, and dysregulated glucose metabolism. Bioinspired polymeric microneedle (MN) patches have emerged as multifunctional platforms capable of penetrating the stratum corneum to deliver therapeutics directly into the dermis, enabling glucose regulation, antimicrobial action, reactive oxygen species (ROS) modulation, and proangiogenic stimulation. Recent experimental evidence has demonstrated that the integration of glucose oxidase-loaded porous metal-organic frameworks, photothermal nanomaterials, and antioxidant hydrogels within dissolvable MNs achieves synergistic bactericidal effects, accelerates collagen deposition, and enhances neovascularization in diabetic wound models.

View Article and Find Full Text PDF