Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, thermally activated delayed fluorescence (TADF) has attracted intense attention owing to its straightforward application to high-efficiency organic light-emitting diodes. Further, to develop high-performance TADF materials, many researchers have designed novel molecules that have a small energy gap between the lowest excited singlet and triplet states ( ), and detailed analysis suggests a significant contribution of higher-lying excited states for spin flipping processes. In this study, we demonstrate a peculiar thermal behaviour of emission decay of a donor-acceptor type TADF molecule, TMCz-BO, which seems like thermal deactivation of delayed fluorescence that can be explained without a negative by comprehensive kinetic analysis across various temperatures and solvents. While the activation energy has previously been treated as being temperature-independent, we stress that it should be a dynamic parameter affected by changing the solvent-solute interaction with the environmental temperature, especially in the case of a small energy gap.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102387PMC
http://dx.doi.org/10.1038/s41467-025-59910-zDOI Listing

Publication Analysis

Top Keywords

donor-acceptor type
8
type tadf
8
tadf molecule
8
delayed fluorescence
8
small energy
8
energy gap
8
temperature dependency
4
energy
4
dependency energy
4
energy shift
4

Similar Publications

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF

Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.

View Article and Find Full Text PDF

While fluorene-containing materials are widely used in organic optoelectronics as bright emitters and hole semiconductors, their diazafluorene analogues have been poorly explored, though their nitrogen atoms could result in electron transport and bring sensory abilities. Here, we report the synthesis, characterization, and detailed study of a series of 4,5-diazafluorene-derivatives with different donor/acceptor substituents and organic semiconductors based on these molecules. The crystal structures of all the materials were solved by X-ray diffraction, indicating the presence of extensive π-stacking and anisotropic charge-transfer pathways.

View Article and Find Full Text PDF

Development of novel photocatalysts for hydrogen peroxide (HO) production from water and oxygen is gathering great attention, but still suffers from inefficient photogenerated charge mobility. Reticular chemistry in metal-organic frameworks (MOFs) provides a promising platform to enhance the charge-transfer kinetics by assembling a donor-acceptor (D-A) system. Here, we designed and synthesized a series of D-A type MOFs (UiO-67-NB, UiO-67-PE/BB, and UiO-67-PE/NB) via regulating the interaction mode of donor and acceptor.

View Article and Find Full Text PDF

Drug repurposing: isosorbide mononitrate enhances tumor accumulation to augment sonodynamic therapy for hepatocellular carcinoma.

J Nanobiotechnology

August 2025

State Key Laboratory for Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

Hepatocellular carcinoma (HCC) remains a leading cause of cancer death worldwide. Sonodynamic therapy (SDT) offers a non-invasive, deep-penetrating approach by using ultrasound to activate sonosensitizers and generate cytotoxic reactive oxygen species (ROS). Yet poor intratumoral delivery and low ROS quantum yields of existing agents have stalled clinical translation.

View Article and Find Full Text PDF