Discovery of potent anti-idiopathic pulmonary fibrosis (IPF) agents based on an o-aminopyridinyl alkynyl scaffold.

Eur J Med Chem

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with high mortality and limited treatment options. Targeting multiple kinase-driven pathological processes offers a promising strategy. Using epithelial-mesenchymal transition (EMT) phenotypic screening, we optimized a series of o-aminopyridinyl alkynyl compounds derived from CSF-1R relatively selective inhibitor, compound 1, through a structure-activity relationship (SAR) study, integrating liver and kidney cytotoxicity evaluations. Compound 22, emerged as the potent antifibrotic candidate, exhibiting low cytotoxic effects against human kidney (HEK293) and hepatocyte (L02) cell lines, and minimal hERG inhibition. In addition, 22 showed significant inhibition against other IPF-related processes, including fibroblast-to-myofibroblast transition (FMT)-driven fibrosis in both human fetal lung fibroblasts cell line (HFL1) and primary human lung fibroblasts (HLFs), as well as pro-fibrotic M2 polarization. In vivo, compound 22 exhibited the acceptable PK properties and low toxicity profiles. In addition, oral administration of 22 demonstrated superior anti-fibrotic efficacy compared to Nintedanib, significantly attenuating bleomycin-induced lung fibrosis, reducing inflammation and pro-fibrotic M2-associated cytokine levels, and improving lung function. Preliminary kinase profiling indicates that compound 22 likely targets CSF-1R, PDGFR-α and Src family kinases to inhibit IPF progression, while sparing VEGFRs, FGFRs and Abl to minimize off-target toxicity commonly associated with multi-kinase inhibitor treatment. These findings highlight the advantages and therapeutic potential of a multi-kinase targeting strategy, enabling selective inhibition key IPF-associated kinases to develop more effective and safer anti-IPF agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2025.117768DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
8
fibrosis ipf
8
o-aminopyridinyl alkynyl
8
lung fibroblasts
8
lung
5
discovery potent
4
potent anti-idiopathic
4
anti-idiopathic pulmonary
4
fibrosis
4
ipf agents
4

Similar Publications

Airway obstruction and gender affect arterial stiffness in children with cystic fibrosis.

Turk J Pediatr

September 2025

Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.

Methods: Fifty-eight cwCF were included.

View Article and Find Full Text PDF

Background: The approval of cystic fibrosis transmembrane conductance regulator modulators elexacaftor/tezacaftor/ivacaftor (ETI), has significantly improved pulmonary function for people with cystic fibrosis (pwCF). However, the effects on CF-related bone disease and body composition remain unclear.

Methods: This retrospective real-world study examined adults with CF who received ETI treatment.

View Article and Find Full Text PDF

Background: Persistent inflammation is a crucial characteristic of idiopathic pulmonary fibrosis (IPF). Gut microbiota (GM) contribute to the occurrence and development of several pulmonary diseases through the "gut-lung axis." The genetic role of GM in IPF and the mediating effect of circulating inflammatory proteins.

View Article and Find Full Text PDF

Introduction: Interstitial pneumonia with autoimmune features (IPAF) describes a rare condition characterized by interstitial lung disease (ILD) with autoimmune manifestations in the absence of defined autoimmune rheumatic diseases (AIRD). Although the classification was established in 2015, prospective data on disease progression remain limited.

Objectives: To identify predictors of ILD progression in IPAF patients using three criteria: 1) progressive pulmonary fibrosis (PPF), 2) INBUILD criteria, 3) absolute FVC decline ≥10%.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction, proliferation, fibrosis, and microthrombosis of the pulmonary vasculature, which causes elevated pulmonary arterial pressure and vascular resistance leading to right ventricular failure and death. Previous treatments targeted three known pathways involved in the development of PAH: endothelin, nitric oxide, and prostacyclin. Dysfunctional signaling of the transforming growth factor-beta (TGF-β) family, via bone morphogenetic protein (BMP) receptor 2 and activin signaling, has also been implicated in PAH leading to the development of a new class of therapies.

View Article and Find Full Text PDF