Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Full-thickness wounds pose significant healing challenges due to their impaired regenerative capacity, persistent inflammation, and oxidative stress. Enhancing the bioactivity of silk fibroin (SF) and the mechanical strength of the human amniotic membrane (hAM) can improve wound healing outcomes. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) offer promising anti-inflammatory and antioxidant benefits, but their poor retention and painful application limits their clinical utility. To overcome these challenges, we developed a composite scaffold of SF and hAM (Sh), loaded with sEVs (ShE), designed to accelerate wound healing by modulating inflammation, oxidative stress, and tissue regeneration. ShE exhibited excellent physical stability, optimal swelling, degradation kinetics, hemocompatibility, and sustained sEV release. , it enhanced keratinocyte and fibroblast proliferation and migration, reduced oxidative stress, and provided immunomodulatory and pro-angiogenic effects. ShE significantly lowered ROS levels, suppressed PHA-activated PBMNC proliferation, facilitated macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, and promoted angiogenesis. , ShE accelerated wound closure within 21 days, outperforming DuoDERM, a commercial dressing. Histopathological analysis demonstrated improved epidermal maturation, dermal regeneration, and reduced scarring in ShE-treated wounds, confirming the superior tissue regeneration capacity. Additionally, its fabrication from medical waste and indigenous raw materials ensures cost-effectiveness and sustainability in healthcare applications. By synergistically regulating cell physiology for skin regeneration, ShE emerges as a promising, clinically viable, and affordable wound dressing for enhanced wound care management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.5c00353DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
human amniotic
8
wound dressing
8
skin regeneration
8
wound care
8
inflammation oxidative
8
wound healing
8
tissue regeneration
8
wound
7
regeneration
5

Similar Publications

Associations between element mixtures and biomarkers of pathophysiologic pathways related to autism spectrum disorder.

J Trace Elem Med Biol

September 2025

Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China. Electronic address:

Objective: We previously documented that exposure to a spectrum of elements is associated with autism spectrum disorder (ASD). However, there is a lack of mechanistic understanding as to how elemental mixtures contribute to the ASD development.

Materials And Methods: Serum and urinary concentrations of 26 elements and six biomarkers of ASD-relevant pathophysiologic pathways including serum HIPK 2, serum p53 protein, urine malondialdehyde (MDA), urine 8-OHdG, serum melatonin, and urine carnitine, were measured in 21 ASD cases and 21 age-matched healthy controls of children aged 6-12 years.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..

Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.

View Article and Find Full Text PDF

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF