Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hypoxia tolerance is mainly controlled by the hypoxia signaling pathway and HIF-1α/2α serve as master regulators in this pathway. Here we identify MYLIP, an E3 ubiquitin ligase thought to specifically target lipoprotein receptors, as a downstream target of HIF-2α and a negative regulator of both HIF-1α and HIF-2α. MYLIP interacts with HIF-1α/2α and catalyzes K27-linked polyubiquitination at lysine 118/442 (HIF-1α) or lysine 117 (HIF-2α). This modification induces proteasomal degradation of HIF-1α, resulting in inhibition of hypoxia signaling. Furthermore, Mylip-deficient bluntsnout bream, zebrafish and mice are more tolerant to hypoxia. These findings reveal a role for MYLIP in regulating hypoxia signaling and identify a target for the development of fish strains with high hypoxia tolerance for the benefit of the aquaculture industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095562 | PMC |
http://dx.doi.org/10.1038/s42003-025-08200-x | DOI Listing |