Severity: Warning
Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied
Filename: drivers/Session_files_driver.php
Line Number: 365
Backtrace:
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The spatiotemporal distribution of land use/cover changes (LUCCs) and carbon storage (CS), as well as their driving factors under global climate change, have become key issues in ecological and environmental sciences. As a major contributor to global CS, understanding China's CS changes and the driving forces is crucial for addressing climate change and achieving carbon neutrality. In the study, China is split into seven major ecological zones, and a combined model is suggested that uses the CMIP6 climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) along with the PLUS and InVEST models. The study systematically analyzes the spatiotemporal evolution of land use and CS from 1990 through 2020 and predicts the changes under three future scenarios for 2030 and 2050. Using Random Forest and SHAP methods, the study quantifies the impact weights of natural and anthropogenic factors on CS. The main findings are as follows: (1) From 1990 to 2020, China's CS showed a steadily increasing trend, but with significant regional differences. The Qinghai-Tibet Plateau is the largest CS area, accounting for 26.96 % of the national total CS in 2020, while the highly urbanized and densely populated South China region has the lowest CS share, only 4.39 %. (2) Under the SSP1-2.6 scenario, CS will be highest in 2030 and 2050, reaching 1.003 × 10 t and 1.026 × 10 t, respectively, with growth rates of 3.33 % and 5.79 % compared to 2020. Under the SSP5-8.5 scenario, CS shows a downward trend, with 9.31 × 10 t and 9.32 × 10 t in 2030 and 2050, respectively, corresponding to a decrease of 4.01 % and 3.91 % compared to 2020. The SSP2-4.5 scenario predicts relatively stable CS. (3) Natural and anthropogenic factors are the primary drivers of the spatiotemporal changes in CS. The importance of these factors varies across different regions. The study provides scientific insights for ecological protection and carbon neutrality policy formulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.121860 | DOI Listing |
J Air Waste Manag Assoc
September 2025
Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY, USA.
Emission factor data for existing heating appliances are being used to estimate achievable emission reductions with emerging heating technologies. However, the emission factors currently being used for modeling were developed prior to low-sulfur fuel standards and rely on a small number of studies, mostly focusing on steady-state operation. In this work, detailed emission measurements of typical heating equipment fired with natural gas and No.
View Article and Find Full Text PDFCancer Med
September 2025
Department of Quality Control, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
Background: In this study, we investigated the global burden, projection, and inequalities of cancer attributable to occupational carcinogen exposure in individuals aged over 40 years.
Methods: Using the Global Burden of Disease 2021 dataset, we examined age-standardized disability-adjusted life years (ASR-DALYs) and deaths associated with cancer attributable to occupational carcinogen exposure. Statistical analyses included: the estimated Annual Percentage Change to assess trends (1990-2021); Bayesian age-period-cohort modeling for projections to 2030 and 2050; decomposition analysis to quantify contributions of aging, population growth, and epidemiological changes; and slope and concentration indices (SII, CI) to evaluate health inequalities by sociodemographic index (SDI).
J Hazard Mater
August 2025
LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
The International Transport Forum projected that global demand for transport could triple by 2050, with shipping demand likely increasing even more rapidly. However, most scenarios for the next 20-30 years suggest that current regulatory policies may be insufficient to offset the rise in traffic. Thus, this study evaluates the impacts of shipping emissions on air quality, health, and external costs in the Iberian Peninsula, analysing past (2017), current (2022), and projected future (2050) scenarios.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute of Forest Ecology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria.
Soils are a major reservoir for organic carbon (C), with subsoils (> 20-30 cm soil depth) storing most of this C. Predicting the response of deep-soil C to global change remains a critical research priority; yet long-term field observations for forests are scarce. In this study, we assessed decadal C dynamics in mineral soils to 90 cm depth of 62 temperate mature stands of European beech (Fagus sylvatica) in Austria using data from sampling campaigns in 1984, 2012, and 2022.
View Article and Find Full Text PDFSci Data
August 2025
Reliability and Risk Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland.
The decarbonization goals worldwide drive the energy transition of power distribution grids, which operate under increasingly volatile conditions and closer to their technical limits. In this context, localized operational data with high temporal and spatial resolution is essential for their effective planning and regulation. Nevertheless, information on grid-connected distributed energy resources, such as electric vehicles, photovoltaic systems, and heat pumps, is often fragmented, inconsistent, and unavailable.
View Article and Find Full Text PDF