98%
921
2 minutes
20
Phosphorus is an essential macronutrient for plant growth and development. Under phosphate (Pi) starvation conditions, plants activate a series of adaptive responses, among which reactive oxygen species (ROS) accumulation in root tissues represents a notable yet poorly characterized phenomenon. This study investigated the regulatory role of hydrogen peroxide (HO) in rice adaptation to Pi deficiency through pharmacological intervention using potassium iodide (KI), a specific HO scavenger. Physiological analysis revealed that root-specific HO depletion via KI treatment significantly impaired both Pi uptake and root growth under Pi-deficient conditions. Transcriptomic profiling demonstrated that HO elimination substantially modulated the expression of 196 Pi starvation-responsive genes, particularly those involved in SPX-mediated phosphate sensing, extracellular acid phosphatases (APase) biosynthesis, high-affinity phosphate transporters, lipid metabolism enzymes, and redox homeostasis maintenance. Subsequent biochemical validation confirmed that both KI and diphenyleneiodonium (DPI) treatments suppressed Pi-starvation-induced APase activity and compromised Pi uptake ability. Notably, comparative analysis with the phr1/2/3 triple mutant revealed a 24% overlap in differentially expressed genes between HO and PHR-deficient plants, with 90% of shared genes exhibiting congruent expression patterns. These findings collectively establish that HO serves as a pivotal signaling mediator in the Pi starvation regulatory network, orchestrating metabolic reprogramming and developmental adaptation to Pi stress in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.70264 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Instituto de Cerámica y Vidrio (ICV-CSIC), C/Kelsen 5, 28049 Madrid, Spain.
The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Chemodynamic therapy (CDT), leveraging Fenton reactions to generate hydroxyl radicals (•OH) from intracellular hydrogen peroxide (HO), offers a promising cancer treatment strategy due to its high specificity and low systemic toxicity. However, the targeted delivery of •OH-producing prodrugs using covalent organic frameworks (COFs) remains a significant challenge. Here, we report a mitochondria-targeted COF-based nano prodrug, COF-31@P, designed for enhanced CDT efficacy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.
Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.
View Article and Find Full Text PDFACS Nano
September 2025
Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.
Mechanical stimuli have been shown to dynamically alter solid-liquid interfaces and induce electron transfer, enabling catalytic reactions, most notably contact-electro-catalysis (CEC). However, the underlying mechanism of charge transfer at solid-liquid interfaces under mechanical stimulation remains unclear, particularly at semiconductor-liquid interfaces. To date, rare studies have reported on the catalytic activity of semiconductor-liquid interfaces under mechanical stimulation.
View Article and Find Full Text PDF