Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nonmelanoma skin cancer (NMSC), including basal cell carcinoma and squamous cell carcinoma, is the most prevalent type of skin cancer. While generally less aggressive than melanoma, early detection and treatment are crucial to prevent the complications. Artificial intelligence (AI) systems show promise in enhancing the accuracy, efficiency, and accessibility of NMSC diagnosis and management. These systems can facilitate early interventions, reduce unnecessary procedures, and promote collaboration among healthcare providers. Despite AI algorithms demonstrating moderate-to-high performance in diagnosing NMSC, several challenges remain. Ensuring the robustness, explainability, and generalizability of these models is vital. Collaborative efforts focusing on data diversity, image quality standards, and ethical considerations are necessary to address these issues. Building patient trust is also essential for the successful implementation of AI in the clinical settings. AI algorithms may outperform experts in controlled environments but can fall short in the real-world clinical applications, indicating a need for more prospective studies to evaluate their effectiveness in the practical scenarios. Continued research and development are essential to fully realize AI's potential in improving NMSC diagnosis and management by overcoming the existing challenges and conducting comprehensive studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087911PMC
http://dx.doi.org/10.4103/jrms.jrms_607_24DOI Listing

Publication Analysis

Top Keywords

diagnosis management
12
skin cancer
12
artificial intelligence
8
nonmelanoma skin
8
cell carcinoma
8
nmsc diagnosis
8
power artificial
4
intelligence improve
4
improve diagnosis
4
management nonmelanoma
4

Similar Publications

Introduction: Diabetes Mellitus is a chronic disease characterised by elevated plasma glucose (PG) levels. HbA1c has been widely utilized for diabetes diagnosis. However, certain conditions restrict its use.

View Article and Find Full Text PDF

BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disorder. While AD diagnosis traditionally relies on clinical criteria, recent trends favor a precise biological definition. Existing biomarkers efficiently detect AD pathology but inadequately reflect the extent of cognitive impairment or disease heterogeneity.

View Article and Find Full Text PDF

Background: People with dementia who have a fall can experience both physical and psychological effects, often leading to diminished independence. Falls impose economic costs on the healthcare system. Despite elevated fall risks in dementia populations, evidence supporting effective home-based interventions remains limited.

View Article and Find Full Text PDF

Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.

Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.

View Article and Find Full Text PDF

Deciphering the molecular landscape of acute myeloid leukemia initiation and relapse: a systems biology approach.

Med Oncol

September 2025

Division of Hematology and Blood Bank, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Acute Myeloid Leukemia (AML) patient-derived Mesenchymal Stem Cells (MSCs) behave differently than normal ones, creating a more protective environment for leukemia cells, making relapse harder to prevent. This study aimed to identify prognostic biomarkers and elucidate relevant biological pathways in AML by leveraging microarray data and advanced bioinformatics techniques. We retrieved the GSE122917 dataset from the NCBI Gene Expression Omnibus and performed differential expression analysis (DEA) within R Studio to identify differentially expressed genes (DEGs) among healthy donors, newly diagnosed AML patients, and relapsed AML patients.

View Article and Find Full Text PDF