98%
921
2 minutes
20
The changes in urban land use and land cover have profound impacts on carbon storage, directly affecting urban carbon balance and climate adaptation capacity. Taking Suzhou City as the study area, this study first conducts a transition matrix analysis of land use data from 2000 to 2020. Then, based on the modified carbon density coefficient coupled with the PLUS and InVEST models, predictions are made for the land use pattern of Suzhou City in 2030 under four scenarios (business-as-usual development, urban sprawl prevention, farmland protection, and ecological conservation). The ecosystem carbon storage from 2000 to 2020 and in 2030 under the four scenarios in Suzhou City are accounted for and the impact of land cover changes on carbon storage is analyzed. Finally, the Geodetector model is used to analyze the spatial differentiation driving forces of carbon storage. This study explores the mechanisms of land use change on carbon storage in regions with high urbanization levels. The results are as follows: ① From 2000 to 2020, Suzhou City's land use pattern underwent significant changes, with a continuous reduction in farmland and woodland, and the conversion of farmland to construction land was especially prominent. ② From 2000 to 2020, Suzhou City lost 3 750 195.27 t of carbon storage. Farmland and water bodies were the main carbon sink areas in the study area, accounting for 39.93% and 33.65% of the total carbon storage, respectively. Additionally, Suzhou City's carbon storage exhibited a spatial distribution characteristic of "gradual increase from north to south." ③ The impact of land use conversion on carbon storage in Suzhou City varied. From 2000 to 2020, farmland was converted out of 1 632.758 km, resulting in a cumulative loss of carbon storage of 3 916 241.609 t, accounting for 96.9% of the total loss. Conversions from water bodies, construction land, and unused land to other land types increased the total carbon storage by 131 184.929, 140 024.741, and 18 641.031 t, respectively. ④ From the perspective of carbon sequestration, the ecological conservation scenario was significantly advantageous compared to the other three scenarios, providing strong evidence and guidance for the formulation of Suzhou City's subsequent carbon reduction policies. ⑤ The spatial differentiation of carbon storage in Suzhou City was jointly influenced by various factors, with elevation, temperature, population density, and Normalized Difference Vegetation Index (NDVI) being the main influencing factors, among which NDVI had the strongest explanatory power, reaching 0.29.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202405077 | DOI Listing |
Adv Mater
September 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).
View Article and Find Full Text PDFChem Rec
September 2025
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.
The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.
View Article and Find Full Text PDFChemSusChem
September 2025
Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Organic battery electrode materials represent a sustainable alternative compared to most inorganic electrodes, yet challenges persist regarding their energy density and cycling stability. In this work, a new organic electrode material is described, which is obtained via ionothermal polymerization of low-cost starting materials, melem (2,5,8-triamino-tri-s-triazine) and perylenetetracarboxylic dianhydride (PTCDA). The resulting networked polymer Melem-PDI exhibits favorable thermal and electrochemical properties, prompting investigation into its performance as a positive electrode material in rechargeable lithium and magnesium batteries.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Energy Storage Institute of Lanzhou University of Technology, School of Materials Science and Engineering, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, China.
The rapid advancement of implantable medical electronic devices has spurred substantial research into implantable energy storage systems. However, the presence of multiple film resistors in traditional sandwich structures impedes further enhancements in the electrochemical performance of supercapacitors and may result in contact failures between electrodes and separators or catastrophic short-circuit failures during tissue deformation. This study introduces a novel approach for fabricating all-in-one Zn-ion hybrid supercapacitors, which effectively mitigates performance degradation and safety concerns arising from interfacial issues.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department Soil Science and Environmental Analyses, Institute of Soil Science and Plant Cultivation-State Research Institute, Puławy, Poland.
Introduction: Soil dissolved organic matter (DOM) regulates nutrient cycling and carbon sequestration, yet how cropping systems (rotation vs. monoculture) shape the vertical distribution and molecular traits of DOM remains unclear.
Methods: We leveraged a long-term experiment (est.