Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose Of Review: Food safety is a fundamental challenge in public health and sustainable development, facing threats from microbial, chemical, and physical contamination. Innovative technologies improve our capacity to detect contamination early and prevent disease outbreaks, while also optimizing food production and distribution processes.

Recent Findings: This article discusses the role of new bioinformatics and machine learning technologies in promoting food safety and contamination control, along with various related articles in this field. By analyzing genetic and proteomic data, bioinformatics helps to quickly and accurately identify pathogens and sources of contamination. Machine learning, as a powerful tool for massive data processing, also can discover hidden patterns in the food production and distribution chain, which helps to improve risk prediction and control processes. By reviewing previous research and providing new solutions, this article emphasizes the role of these technologies in identifying, preventing, and improving decisions related to food safety. This study comprehensively shows how the integration of bioinformatics and machine learning can help improve food quality and safety and prevent foodborne disease outbreaks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13668-025-00657-wDOI Listing

Publication Analysis

Top Keywords

machine learning
16
food safety
16
bioinformatics machine
12
disease outbreaks
8
food production
8
production distribution
8
food
7
safety
5
application bioinformatics
4
machine
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF