Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adjusting magnetization orienting and conformal assembling of high-coercivity micro-magnets at the microscale remains challenging, despite long-standing demand for space-resolved magnetic modulation in various applications. Local magnetic modulation, including remagnetization or reassembly, typically requires high fields and temperatures to overcome the coercivity and stringent conditions while suffering from low assembly efficiency or poor spatial resolution. Here, we report a linear magnet composed of a hydrogel (alginate) matrix and precisely discrete phase-change-material (PCM, eicosane) cells containing micro-magnetic particles (NdFeB, ~5 µm). Moderate local laser heating (~40 °C) reversibly switches PCM from solid to fluid state thus relaxing particles' interfacial constraints inside the hydrogel matrix, overcoming the high-coercivity of magnetic assembly and allowing particles in cells to reorient under mild fields (≤30 mT). The linear magnet shows excellent discrete magnetization programmability (~150 µm) and stretchability (strain ~80%), enabling versatile functionalities such as conformal and patterned field generation, soft robotic actuation, flexible sensing, and interactive wearables with dynamically coded information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085658PMC
http://dx.doi.org/10.1038/s41467-025-59663-9DOI Listing

Publication Analysis

Top Keywords

linear magnet
12
magnetic modulation
8
magnet fluid-solid-switchable
4
fluid-solid-switchable cells
4
cells flexible
4
flexible devices
4
devices adjusting
4
adjusting magnetization
4
magnetization orienting
4
orienting conformal
4

Similar Publications

We present the first constraints on primordial magnetic fields from the Lyman-α forest using full cosmological hydrodynamic simulations. At the scales and redshifts probed by the data, the flux power spectrum is extremely sensitive to the extra power induced by primordial magnetic fields in the linear matter power spectrum, at a scale that we parametrize with k_{peak}. We rely on a set of more than a quarter million flux models obtained by varying thermal and reionization histories and cosmological parameters.

View Article and Find Full Text PDF

Structural Evidence for the Spin Collapse in High Pressure Solid Oxygen.

Phys Rev Lett

August 2025

European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.

Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.

View Article and Find Full Text PDF

Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.

View Article and Find Full Text PDF

This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.

View Article and Find Full Text PDF

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF