Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Processed electroencephalography (EEG) indices used to guide anesthetic dosing in adults are not validated in young infants. Raw EEG can be processed mathematically, yielding quantitative EEG parameters (qEEG). We hypothesized that machine learning combined with qEEG can accurately classify expired sevoflurane concentrations in young infants. Knowledge from this may contribute to development of future infant-specific EEG algorithms. Frontal EEG collected from infants ≤ 3 months were time-matched as one-minute epochs to expired sevoflurane (eSevo). Fifteen qEEG parameters were extracted from each epoch and eight machine learning models combined the qEEG to classify each epoch into one of four eSevo levels (%): 0.1-1.0, 1.0-2.1, 2.1-2.9, and > 2.9. 64 epochs formed the post hoc SHAP dataset to determine the qEEG that contributed most to the model. The remaining epochs were randomly split 50 times into 80/20 training/testing sets. Accuracy and F1-score determined model performance. 42 infants provided 4574 epochs. The top classifiers K-nearest neighbors, default multi-layer perceptron, and support vector machine achieved 67.5-68.7% accuracy. Burst suppression ratio and entropy β were the top contributors to the models. Post hoc analysis performed without burst suppression ratio yielded similar prediction performance. In young infants, machine learning applied to qEEG predicted eSevo levels with moderate success. Burst suppression ratio, the most important contributor, represented an efficient EEG feature that encapsulated underlying EEG changes seen on other qEEG features. These results provided insight into EEG parameter selection and optimal machine learning models used for future development of infant-specific EEG algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10877-025-01301-2DOI Listing

Publication Analysis

Top Keywords

machine learning
20
expired sevoflurane
12
young infants
12
burst suppression
12
suppression ratio
12
eeg
9
combined qeeg
8
infant-specific eeg
8
eeg algorithms
8
learning models
8

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF