Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Digital enzyme-linked immunoassays (dELISA) have been successfully applied to the ultrasensitive quantification of analytes, including nucleic acids, proteins, cells, and extracellular vesicles, achieving robust detection limits in complex clinical specimens such as blood, and demonstrating utility across a broad range of clinical applications. The ultrasensitivity of dELISA comes from partitioning single analytes, captured onto a microbead, into millions of compartments so that they can be counted individually. There is particular interest in using dELISA for multiplexed measurements, but generating and detecting the billions of compartments necessary to perform multiplexed ultrasensitive dELISA remains a challenge. To address this, we have developed a high-throughput, optofluidic platform that performs quantitative fluorescence measurements on five populations of microbeads, each encoded with distinct ratios of two fluorescent dyes, for digital assays. The key innovation of our work is the parallelization of droplet generation and detection, combined with time-domain encoding of the excitation sources into distinct patterns that barcode the emission signal of both dyes within each bead, achieving high throughput (6 × 10 droplets/min) and accurate readout. Additionally, we modulate the exposure settings of the digital camera, capturing images of multiplexed beads and the droplet fluorescent substrate in consecutive frames, a method inspired by high dynamic range (HDR) photography. Our platform accurately classifies five populations of dual-encoded beads (accuracy > 99%) and detects bead-bound streptavidin-horseradish peroxidase molecules in a third fluorescence channel. This work establishes the technological foundation to combine high multiplexing and high throughput for droplet digital assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084528PMC
http://dx.doi.org/10.1038/s41378-025-00918-2DOI Listing

Publication Analysis

Top Keywords

high throughput
12
high dynamic
8
dynamic range
8
digital assays
8
high
6
digital
5
combining time
4
time domain
4
domain modulation
4
modulation optofluidics
4

Similar Publications

CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance.

View Article and Find Full Text PDF

Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for Structural colors offer distinct advantages over traditional chemical colors (such as pigments and dyes), including high saturation, resistance to fading, and environmental friendliness. However, unlike traditional dyes or pigments that allow for arbitrary color adjustments during the coloring process, current structural color surfaces lack flexibility in control, as their colors are difficult to reprocess or adjust once formed.

View Article and Find Full Text PDF

Targeted 'infectiosome' for disease ecology: A new tool to answer old questions.

J Anim Ecol

September 2025

Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Paris, France.

Research Highlight: Bralet, T., Aaziz, R., Tornos, J.

View Article and Find Full Text PDF

Abnormal immune responses are common clinical features in septic patients. γδ T cells, as innate immune cells, play an important role in host defense, immune surveillance and homeostasis. However, the immune characteristics of γδ T cells in pediatric sepsis remains remain poorly understood.

View Article and Find Full Text PDF

Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.

Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.

View Article and Find Full Text PDF