98%
921
2 minutes
20
Dendrites play an essential role in processing functions by facilitating the integration of spatial and temporal information in biological system. Nanofluidic memristors, which harness ions for signal transmission within electrolyte solutions, closely resemble biological neuronal ion channels and hold the potential for the development of biorealistic neuromorphic devices. Herein, inspired by the optogenetic technique that utilized light to tune the ions dynamic, an optical-controlled nanofluidic artificial dendrite by embedding layered graphene oxide (GO) within a polydimethylsiloxane (PDMS) elastomer is developed. Taking advantage of the confinement effect of ions in the nanochannel, it has demonstrated optically-modulated ionic currents, which can effectively replicate dendritic functions. The mechanism can be attributed to the migration of Na ions, driven by the electric potential difference light illumination. The dendritic spatial and temporal multiport integrations are realized, including the dendritic sublinear/superlinear integrations and spike-rate-dependent plasticity (SRDP). Moreover, the hand withdrawal reflex, as a crucial mode of neuroregulation governed by central nerve and brain control signals, is replicated in the nanofluidic dendrite-based neuromorphic system, capable of managing a range of withdrawal states of a mechanical arm. This work offers a new strategy for developing nanofluidic artificial dendrite and paves the way toward developing advanced neuromorphic sensorimotor systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202502438 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Jiangsu Key Laboratory for Design and Manufacture of Precision Medicine Equipment, School of Mechanical Engineering, Southeast University, Nanjing 211189, China.
Nanofluidic memristors have become a hotspot in neuromorphic computing research due to their potential in modeling biological synaptic functions. However, many existing nanofluidic memristors rely on electrochemical or electric field-driven mechanisms, failing to directly mimic the properties of mechanically gated ion channels (e.g.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Department of Mathematics and Statistics, Collage of Science, Taif University, Taif, Saudi Arabia.
This work investigates the electroosmotic peristaltic transport of a Casson (blood)-based hybrid nanofluid via an asymmetric channel embedded inside a porous medium. The model takes into consideration electric and magnetic field effects, Ohmic heating, as well as velocity and thermal slip conditions. The governing equations are simplified and solved by employing unsupervised sigmoid-based neural networks (SNNs), Fibonacci-based neural networks (FNNs), and their hybrid model (FSNNs) under the assumptions of low Reynolds number and long wavelength.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, PR China.
Lithium metal negative electrodes are highly promising for high-specific-energy batteries due to their low electrochemical potential and high capacity. However, dendrite growth due to limited Li transport at the interface hinder their performance and safety. Enhancing interfacial Li transport can prevent Li depletion and ensure uniform Li deposition.
View Article and Find Full Text PDFEnviron Sci Technol
August 2025
Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
Pressure-driven separations with nanoporous membranes, such as reverse osmosis and nanofiltration, play a vital role in addressing water scarcity and enabling resource recovery. Understanding water or solvent transport in membrane pores is essential for advancing membrane separation technologies. A key question in transport modeling is to establish a relationship between solvent permeability and membrane porous structure properties, such as porosity or pore size.
View Article and Find Full Text PDFAnal Chem
August 2025
State Key Laboratory of Microbial Technology, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
Biomimetic nanofluidic devices have emerged as powerful tools for biomedical analysis due to their nanoconfinement effects and label-free detection capabilities. These engineered nanoplatforms enable precise monitoring of ionic dynamics, molecular interactions, and neural signal simulation, offering versatile solutions for clinical diagnostics and pharmacological studies. This review provides a comprehensive overview of recent advancements in biomimetic nanofluidic technology for biomedical applications.
View Article and Find Full Text PDF