Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The broomrapes are root-parasitic weeds widely distributed in the temperate zone area. The effective management on the Phelipanche and Orobanche parasitic weeds still remains challenging to date.

Results: Novel strigolactone (SL) analogues (X series) and mimics (O series) derived from indolin-2-one were designed and synthesized. Of them, compound O-3 showed nearly ten-fold higher seed germination activity (median effective concentration (EC) = 0.0066 μm) towards Phelipanche aegyptiaca seeds compared to the control GR24. Moreover, it also showed prominent seed germination activity towards Phelipanche ramosa. At a dosage of 0.2 μm, the glasshouse experiment revealed that compound O-3 not only displayed the profitable P. aegyptiaca control, but also influenced fruit and plant stalk development in tomato cultivation. Theoretical computational studies indicated that compound O-3 could perfectly interact with catalytic triad of OmKAI2d4, and the oxime linker facilitate to release the active D ring species, thereby significantly improving bioactivity.

Conclusions: A class of SL mimics incorporating a unique oxime linker has been developed from indolin-2-one. Compound O-3 exhibited the highest seed germination activities toward the parasitic P. aegyptiaca and P. ramosa, and could serve as a promising lead compound for the Phelipanche control. © 2025 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.8904DOI Listing

Publication Analysis

Top Keywords

compound o-3
16
seed germination
12
strigolactone analogues
8
phelipanche control
8
germination activity
8
oxime linker
8
phelipanche
5
compound
5
design synthesis
4
synthesis strigolactone
4

Similar Publications

In the mol-ecule of the title compound, CHNO, the isoxazol and phenyl rings are oriented at a dihedral angle of 14.84 (5)°. The 2-cyano-acrylate moiety is in - configuration.

View Article and Find Full Text PDF

Molecular characteristics of halogenated disinfection byproducts elucidated by Fourier transform ion cyclotron resonance mass spectrometry.

Environ Pollut

September 2025

Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China. Electronic address:

Dissolved organic matter is the main precursor for the formation of halogenated disinfection by-products (X-DBPs) during the disinfection of drinking water. However, the majority of the X-DBPs identified based on the artificially prepared water using the Suwannee River Natural Organic Matter (SRNOM) will bias the assessment of X-DBP formation potential in actual natural water. Herein, the non-targeted analysis based on ultrahigh-resolution mass spectrometry was employed to reveal the discrepancy in the molecular composition of X-DBPs and their precursors in SRNOM solution and actual authentic samples during disinfection.

View Article and Find Full Text PDF

The ultraviolet (UV) process is recognized as an environmentally friendly treatment, typically producing fewer byproducts compared to conventional chemical oxidation methods. However, research on the mechanisms underlying the removal of toxic effects by UV and UV-based combined processes during wastewater treatment remains insufficient. In this study, effect-based trigger values (EBTs) for acute toxicity, genotoxicity, and estrogen receptor (ER) agonist activity were derived and subsequently applied to assess three categories of toxicity variations in both full-scale wastewater treatment plants (WWTPs) and pilot-scale systems.

View Article and Find Full Text PDF

Unraveling ozone formation sensitivity to ambient VOCs and NOx at urban and mountain sites in a typical city of eastern China.

Environ Pollut

September 2025

School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Ozone (O) is a primary pollutant affecting air quality in China, whose formation rate was non-linearly based on volatile organic compounds (VOCs) and nitrogen oxides (NOx). A comprehensive understanding of the key drivers governing O formation and its sensitivity to precursor variations presents a persistent research challenge, stemming from the complex interplay of underlying photochemistry, meteorology, and topography. To address this knowledge gap, we conducted synchronous measurements of O and its precursors at both an urban (JPU) and a mountain (LM) site in a typical city in eastern China, enabling concurrent evaluation of O formation sensitivity and diagnostic analysis of its underlying mechanisms.

View Article and Find Full Text PDF

Synergistic contributions of typical photochemical reactive species to ozone pollution in the southeastern coastal city of China.

J Hazard Mater

September 2025

State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic

Surface ozone (O) pollution has emerged as a regional environmental issue. Photochemical reactive species significantly impact O photochemical formation by regulating radicals and atmospheric oxidation capacity. This study focuses on O pollution in a southeastern coastal city, utilizing coordinated methods of filed observations and Photochemical Box Model to explore the pollution mechanisms and sensitivity analyses of typical reactive species (PAN, HCHO, and isoprene).

View Article and Find Full Text PDF