Enhancing π-π stacking by a halogen substituent in a single-molecule junction.

Chem Commun (Camb)

Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Modulating π-π interactions and understanding their impact on charge transport at the molecular scale are critical for advancing supramolecular electronics. Herein, anthracene-based molecular wires (Py-X, X = H, F, Cl, Br) were synthesized and the effect of halogen substituents on π-π stacking was investigated. Experimental results revealed that Py-Br and Py-Cl form both monomer and π-stacked dimer junctions, while Py-H and Py-F only form monomer junctions. The bromine substituent demonstrates a unique ability to promote π-stacked dimer formation. This work provides a design strategy for the formation of π-stacked dimmers in molecular junctions, and advances the development of supramolecular electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc02037aDOI Listing

Publication Analysis

Top Keywords

π-π stacking
8
supramolecular electronics
8
form monomer
8
π-stacked dimer
8
enhancing π-π
4
stacking halogen
4
halogen substituent
4
substituent single-molecule
4
single-molecule junction
4
junction modulating
4

Similar Publications

Photocatalytic water splitting for hydrogen production has been considered as an effective approach to address the current energy crisis and environmental challenges. Among all materials for such applications, covalent triazine frameworks (CTFs) are regarded as ideal candidates owing to their conjugated structures with rich aromatic nitrogen atoms, which can provide abundant active sites, suitable bandgaps, good structural tunability, and high chemical stability. Although current research studies have shown that the modification of functional groups in CTFs can adjust the band structure and carrier flow characteristics of photocatalysts, leading to improved performance, the impact of the intrinsic structural characteristics of CTFs (, stacking modes, hydrogen bonding) on their photocatalytic performance remains unclear.

View Article and Find Full Text PDF

First-principles calculations show that the geometric and electronic properties of silicene-related systems have diversified phenomena. Critical factors of group-IV monoelements, like buckled/planar structures, stacking configurations, layer numbers, and van der Waals interactions of bilayer composites, are considered simultaneously. The theoretical framework developed provides a concise physical and chemical picture.

View Article and Find Full Text PDF

Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo W Y.

J Phys Condens Matter

December 2019

School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, People's Republic of China.

Artificial van der Waals (vdW) heterojunctions assembled by atomically-thin two-dimensional (2D) materials have demonstrated new physical phenomena and unusual properties, thus triggering new electronic, optoelectronic, valleytronic and photocatalytic application. Herein, the electronic band structures of different vdW heterojunctions based on ternary Mo W Y (Y  =  S, Se; x  =  0-1) monolayer with five stacking orders (AA, AA[Formula: see text], A[Formula: see text]B, AB, AB[Formula: see text]) have been investigated using first principle calculations. The direct/indirect band gap has been obtained in the AA[Formula: see text] stacking type-II heterojunctions, ranging from 0.

View Article and Find Full Text PDF

Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅) π-stacks of radicals, respectively.

View Article and Find Full Text PDF

A 500 and 300 MHz proton NMR study of the series of oligoarabinonucleotides 5'aAMP, 3'aAMP, aA-aA, (aA-)2aA and (aA-)3aA is presented. In addition, circular dichroism is used to study the stacking behaviour of aA-aA. The complete 1H-NMR spectral assignment of the compounds (except the tetramer) is given.

View Article and Find Full Text PDF